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Abstract

Local projections (LPs) are a popular tool in macroeconomic research. We show that LPs

are often used with very small samples in the time dimension and, consequently, that LP

point estimates can be severely biased. Under regularity conditions, we derive simple expres-

sions to approximate this bias and propose a way to bias correct LPs. Using a medium-scale

macroeconomic time-series model, we demonstrate that the bias in point estimates can be eco-

nomically meaningful. We also show that the same small-sample bias issue can also lead some

autocorrelation-robust standard errors to understate sampling uncertainty.

1 Introduction

We show that if a time series is persistent—as is generally the case when researchers are interested in

impulse responses—then estimators of impulse responses by local projections (LPs) can be severely

biased in sample sizes commonly found in the empirical macroeconomics literature.

Starting with Jordà (2005), LPs have been used by researchers as an alternative to other time

series methods, such as vector autoregressions (VARs). We survey the literature and find that,

over the past 15 years, LPs have been applied in a variety of settings that are notably different

than the setting studied in Jordà (2005). In particular, we find that sample sizes in the time

dimension are typically much smaller than the sample sizes studied in Jordà (2005) and that LPs

have become increasingly prevalent when researchers also have a cross section of data (i.e., panel
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data). Additionally, researchers often approach LPs with identified structural shocks in hand,

rather than identifying those shocks as a part of the estimation.1 We focus on this idealized case

in this paper as it is a natural benchmark for understanding the methodology.

We analyze the small-sample bias in LPs using a higher-order expansion of the LP estimator,

building on the related work of Kendall (1954), Nagar (1959), Rilstone et al. (1996), Anatolyev

(2005), and Bao and Ullah (2007). We show that the approximate bias of the LP estimator at

horizon h is a function—specifically, a weighted sum—of the (population) impulse response function

at horizons up to h. As a result, if the data are positively autocorrelated and LP estimators across

horizons have the same sign (as is the case for hump-shaped impulse responses), then the least-

squares estimators are biased toward zero at every horizon. Additionally, our analysis highlights

that the small-sample estimates from LPs are not “local” because the small-sample biases of those

estimates depend on the true impulse responses at other horizons.

Using Monte Carlo analysis, we demonstrate that the magnitude of the bias in LPs can be

large when sample sizes in the time dimension are similar to those typically found in the empirical

macroeconomics literature. We conduct our Monte Carlo simulations using simple, linear data gen-

erating processes and an estimated medium-scale macroeconomic VAR. While researchers may be

drawn to LPs because they invoke fewer parametric restrictions than other methods, an important

standard for this methodology is that it performs well in these simple scenarios.

The expression for the approximate bias that we derive can be used to bias correct LP estimators.

In Monte Carlo simulations, on average our bias-corrected estimators are markedly closer to the true

values of the impulse responses.2 We discuss the tradeoff that researchers face between reducing

bias and potentially increasing the mean squared error (MSE) of the estimator. We note that the

bias correction does not uniformly increase or decrease MSE in our Monte Carlo simulations.

We extend our analysis to settings using panel data and show that—when using fixed effects—

the bias we document persists. We derive formulas to approximate the bias, which could be used

to bias-correct LP estimators. We show that increasing the number of entities in the panel will not

eliminate the bias.

We also study the downward bias in the standard errors of LP estimators. Our analysis of

standard errors is related to recent work by Montiel Olea and Plagborg-Møller (2021), who suggest
1In what follows, we always refer to the regressor associated with the LP coefficient as the “shock.”
2Because our bias correction does not completely eliminate small sample bias, in some settings researchers may

prefer methods, such as VARs, that estimate the same impulse responses as LPs (see Plagborg-Møller and Wolf

(2019)) and have well-understood, effective methods for bias correction (see Kilian (1998)).
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that researchers using LPs should use heteroskedasticity-consistent, but not autocorrelation-robust,

standard errors. Our focus on finite sample issues leads us to similar conclusions, but for different

reasons. We show that small-sample bias can be an important consideration when using Newey

and West (1987) (NW) standard errors. These standard errors rely on estimators of the auto-

correlation of the regression score. For similar reasons to the LP point estimators themselves, in

finite samples, the estimators of these autocorrelations will be biased. In important, empirically-

realistic settings the bias will be downward, yielding smaller estimates of standard errors. This

result suggests researchers may prefer standard errors that are heteroskedasticity-consistent, but

not autocorrelation-robust, such as those studied in Huber (1967) and White (1980) (HW). Alter-

natively, researchers may want to consider alternative HAR standard erros, like those discussed in

Müller (2014), Sun (2014), and Lazarus et al. (2018).

Our paper is related to work by Kilian and Kim (2011), who study the coverage probabilities

for confidence intervals for LP estimators using bootstrap methods. Their work focuses on the

case when shocks are identified as a part of the LP estimation and uses the block bootstrap to

approximate the finite sample distribution of the least-squares estimate. By contrast, our analysis

relies on higher-order expansions of the least-squares estimator, which illustrates the reasons that

the least-squares estimator is biased and provides a natural bias correction without bootstrapping.3

More generally, our paper is related to work on bias in least-squares estimators of autocorrelation

(such as Kendall (1954) and Shaman and Stine (1988)), in VARs (such as in Nicholls and Pope

(1988) and Pope (1990)), dynamic panel data settings (such as Nickell (1981) and Hahn and Kuer-

steiner (2002)), and in generalized method of moments systems (Rilstone et al. (1996), Anatolyev

(2005), and Bao and Ullah (2007)). We apply this work in our LP setting.

2 Some evidence on the use of LPs

To get a sense of how LPs are used in the literature, we examine the 100 “most relevant” papers

citing Jordà (2005) on Google Scholar.4 Google Scholar’s relevance ranking weighs the text of the

document, the authors, the source of the publication, and the number of citations. Of these 100
3The bias correction procedure detailed here cannot be used within a block bootstrap procedure because the all

value of θj are needed for 0 ≤ j < h and the blocking effectively destroys the dependent structure of the data that

would make such calculations possible.
4We conducted this search in October 2019. See Appendix F for the list of citations.
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papers, 71 employed LPs in an empirical project (rather than merely citing but not applying LP).5

The focus of this paper is parameter bias associated with short time series, so for each of the

studies we recorded the length of the time series, T , in the main LP in each of these papers. About

two-thirds of the papers surveyed employed panel data. As we show in Section 4, with entity-specific

fixed effects the time dimension is still the relevant component of the sample size for determining

the LP bias. Because many of the panel data sets are unbalanced, constructing a single summary T

is challenging. For unbalanced panels, we summarize the size of the time dimension using the mean

T across entities, when readily available, or using the largest value of T across entities. In general,

our assessment of T is conservative in the sense that it overestimates the time series dimension of

the data for many of the LP applications. It is not unusual, for example, to see unbalanced panels

that have an average T that is less than half of the time-series dimension of the entire panel or

to see robustness exercises that use a small fraction of the data series. In these cases, we use the

entire time series dimension of the panel, which biases our estimates of T up.
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Figure 1: T is small in the literature using LPs.

Figure 1 displays a histogram of the sample of 71 T s collected in our literature review. The

median T (the red dash dotted line) is around 95. These sample sizes are significantly smaller

than those typically used in empirical macroeconometrics papers, as most of the papers surveyed

here use the increasingly popular strategy of using observed shocks, such as the monetary policy
5If a paper appeared as both a working paper and a published paper, we excluded the working paper version from

our analysis.
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shocks of Romer and Romer (2004), rather than identified shocks from a VAR, as in Jordà (2005).

Constructing these observed shocks is often difficult and costly, so the time series typically have

short length.

The application of LPs to such short time series does not seem to have been anticipated in

the early literature on LPs. In fact, the Monte Carlo studies in Jordà (2005) used T = 300 and

T = 496 (the orange, dashed lines in Figure 1). Less than 6 percent of the surveyed studies use

sample sizes at least that large. While many studies in our survey use annual or quarterly data,

Jordà (2005) used monthly data. In general, however, increasing T by using monthly data rather

than quarterly or annual data will not eliminate the issue of small-sample bias in LPs because the

monthly series are likely to be more persistent, and the bias in LPs is more severe when the data

are more persistent.

3 Bias in LPs

In this section, we analyze the bias in LPs using a Nagar (1959) expansion. We focus on LPs

that estimate the impulse response of a macroeconomic variable, yt, to a structural shock, εt. As

mentioned in the introduction, the structural shock is observed and inference is conducted using

linear, least-squares regression. The LP model is the set of regression models indexed by the impulse

response horizon, h,

yt+h = αh + β′hxt + uh,t, h = 0, . . . , H. (1)

where xt = [εt, c
′
t−1]

′ contains the structural shock and (time t−1) controls. For ease of exposition,

we assume the control vector, ct−1, is not empty—in practice, researchers use ct−1 to condition

inference on information available at time t − 1. The first elements of the coefficient vectors

{βh}Hh=0 trace out the impulse response of interest. We denote the H + 1 vector describing the

impulse response by θ with elements θh for h = 0, . . . , H. As in the empirical macroeconomics

literature, we estimate each βh using ordinary least squares. We denote the estimator of the βh by

β̂h,LS and the estimator of the impulse response by θ̂LS .6

6It is also common in the LP literature to use yt+h − yt−1 as the left hand side variable. If yt − yt−1 can be

included in wt as defined in Assumption 1, and so long as our assumptions still hold, then Analytic Result 1 holds.

Analogous results to other results in the paper can be derived using straightforward modifications to our analysis.
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3.1 The approximate bias of the least-squares estimator

To ease notation and without loss of generality, throughout the paper we assume that the data we

consider have mean zero. To facilitate the derivation of the bias we make the following assumption

about the time series properites of yt, εt and ct−1.

Assumption 1. The series wt = [yt, εt, c
′
t]
′ is strictly stationary and ergodic. The series has a

purely nondeterministic Wold representation with innovations ωt = [εt, ν
′
t]
′,

• εt is independent of εt+j for all j ̸= 0,

• εt is independent of νt+j for all j,

• E[xtx′t] is invertible and E[||xtx′t||] is finite, where ||·|| denotes the 2-norm.

Our assumption about the properties of εt are meant to formalize what is meant by a structural

shock. The linearity of wt in all shocks is a stark assumption that facilitates the derivation of

closed form expressions for the bias in LPs. Linearity in the shock of interest, εt, also represents an

idealized case where “direct causal inference”—as in Nakamura and Steinsson (2018)—is possible.

Notably, in the case where wt is gaussian and εt is iid, the conditions of Assumption 1 are satisfied.

We emphasize that violations of Assumption 1 do not imply that LPs are not biased in small

samples. Rather, violations of Assumption 1 make it difficult to characterize the small sample bias.

In addition, we make the following assumption about the regression errors from the LP.

Assumption 2. The regression error, uh,t, is independent of εt−j and νt−j−1 for all j ≥ 0.

This assumption formalizes what we mean by conditioning inference on information available at time

t−1 by including ct−1 in the LP. This guarantees that the regression error will be at most an MA(h)

in νt and an MA(h−1) in εt, representing an idealized case where the controls perfectly control for

time t − 1 information. This effectively truncates the terms in the approximate bias, simplifying

the subsequent calculations considerably. As with Assumption 1, a violation of Assumption 2 does

imply a lack of bias; we discuss implications of departures from this assumption later in the paper.

We can now state our main analytical result regarding the approximate bias in LPs.

Analytical Result 1 (Expression for the bias in LP). Under Assumptions 1-2, the approximate

bias for the LP in (1) is given by

E
[
θ̂h,LS

]
− θh = Bh,LP +O

(
T−3/2

)
, (2)
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where

Bh,LP = − 1

T − h

h∑
j=1

(
1 + tr

{
Σ−1
c,0Σc,j

})
θh−j for h > 0, (3)

Σc,j = E [ct−jc
′
t], and tr{·} is the trace operator. Additionally, B0,LP = 0.

The derivation of equations (2) and (3) relies on the methodology of Bao and Ullah (2007).7 A

detailed derivation is in Appendix A. We refer to Bh,LP as the approximate bias. Several remarks

regarding Analytic Result 1 are in order. First, |Bh,LP | is a decreasing function of T ; for fixed

h, the least-squares estimator is consistent. Second, Bh,LP is a function of the impulse response

coefficients at all horizons up to h. Intuitively, the data generating process affects the bias at

similar horizons in similar ways. Conditioning inference on information available at time t − 1,

however, truncates the terms that contribute to the bias by eliminating the autocorrelation in the

regression errors at sufficiently large lags.8 Third, the contribution of θh−j to Bh,LP is scaled by

1 + tr
{
Σ−1
c,0Σc,j

}
. When controls are relatively persistent this scaling factor is relatively large.

Fourth, intuitively B0,LP = 0 because the structural shock, εt, is iid and u0,t is independent over

time.

It is useful to parse the contribution to Bh,LS that is due to estimating αh. To this end, we

derive the approximate bias when αh is known.

Analytical Result 2 (Expression for the bias in LP when αh is known). Under Assumptions 1-2,

and under the additional assumption that αh is known, the expression for the bias in (1) is given
7Some additional technical remarks regarding our analytical framework are in order. The least-squares estimator

can be cast as a k-class estimator—see Theil (1961). The characteristics of k-class estimators are important for the

study of parameter bias (both finite sample and asymptotic) in simultaneous equations models, in particular for the

study of (weak) instrumental variables. Sawa (1972) shows that for many k-class estimators the first moment may not

even exist, rendering the approximations in this paper inaccurate—see also Srinivasan (1970). We acknowledge this

limitation, but note that with the additional assumption of normality—following Sawa (1972)—one can guarantee

the existence of the first moment of θ̂LS . Additionally, one can think of the stochastic terms used in the procedure of

Bao and Ullah (2007) as offering an approximation to the true finite sample distribution of θ̂LS . This approximation

may have finite moments even when the exact distribution of θ̂LS does not.
8An earlier version of the paper examined the bias in the alternative polar case: LPs without controls. This LP

violates assumption 2, and requires a slightly different derivation. In the AR(1) model here, the bias is given by:

(1− ρ−(T−h))(ρT − ρh+1)/(1− ρ). This can be smaller or larger than the approximate bias in Equation 6 depending

on ρ, h, and T . Herbst and Johannsen (2021) contains more details on the bias in LPs without controls.
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by

E
[
θ̂h,LS

]
− θh = − 1

T − h

h∑
j=1

tr
{
Σ−1
c,0Σc,j

}
θh−j +O

(
T−3/2

)
, (4)

where Σc,j and tr{·} are defined as in Analytic Result 1. Additionally, E
[
θ̂h,LS

]
− θh = O(T−3/2).

From equation (4), it is immediately apparent that estimating αh adds the terms −(T−h)−1
∑h

j=1 θh

to the approximate bias. When θh > 0 and tr
{
Σ−1
c,0Σc,j

}
> 0, as is the case in many macroeconomic

settings, estimating αh increases the magnitude of the (negative) approximate bias.

3.2 An AR(1) example

Here we examine the approximate bias in LPs using a canonical AR(1) model for yt. In particular,

we assume that

yt = α+ θ0εt + ρyt−1 + νt with εt
iid∼ N(0, σ2ε) and νt

iid∼ N(0, σ2ν). (5)

Further, we assume that ρ ∈ (0, 1). The researcher observes {(yt, εt)}Tt=1 and estimates the LP

defined in equation (1) with ct−1 = yt−1 using ordinary least squares. This example satisfies

Assumptions 1 and 2.

3.2.1 Explicit approximate bias

Noting that θh = θ0ρ
h, it is easy to see from Analytic Result 1 that the approximate bias of the

LP is given by

Bh,LP =− 1

T − h

h∑
j=1

(
1 + ρj

)
θ0ρ

h−j = − θ0
T − h

(
1− ρh

1− ρ
+ hρh

)
. (6)

The term (1 − ρh)/(1 − ρ) accounts for the bias arising from estimating the constant, αh, and

the term hρh accounts for the bias arising from the persistence of the control, ρ. If θ0 > 0 (a

normalization), Bh,LP ≤ 0 for all T and 0 < h < T . That is, the bias is always downward. It is not

straightforward to say at which horizon the bias is largest: argmax0<h<T |Bh,LP | is a complicated

function of ρ and T because the component of the bias associated with estimating the constant is

generally decreasing in magnitude, whereas the component associated with persistent regressors in

increasing in magnitude.
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3.2.2 Quality of the approximation

Here we analyze how well Bh,LP approximates the small-sample bias of θ̂h,LS by comparing the

approximate bias to the exact bias calculated using Monte Carlo simulations—using equation 5—

for various ρ and T . For this this exercise, we set σε = σν = 1 and θ0 = 1. The variance parameters

do not appear in Bh,LP .9 Figure 2 shows Bh,LP along with the Monte Carlo estimate. The figure

shows results for ρ ∈ {0.90, 0.95, 0.99} and T ∈ {50, 100, 200}.

For ρ = 0.9 and ρ = 0.95, Bh,LP is a good approximation to the exact small-sample bias in θ̂h,LS
for all h shown. The quality of the approximation improves somewhat as T increases. Clearly, when

ρ = 0.99, Bh,LP is not as good of an approximation as it is for smaller values of ρ. Nevertheless, even

with ρ = 0.99 and T = 50 Bh,LP captures salient features of the small-sample bias, including that it

is growing in magnitude in h over the values of h shown. We conclude that for empirically relevant

sample sizes, Bh,LP offers a reasonable approximation to the bias in LPs, though the quality of the

approximation is somewhat worse for smaller values of T and larger values of ρ. In Appendix C,

we show that similar results hold for an AR(2) model with hump-shaped impulse responses.

3.2.3 Comparison to parametric approach

LP estimators are often compared to estimates of impulse responses from VARs. These discussions

are often centered around the different asymptotic bias and variance trade offs associated with the

(relatively flexible) LP and (tightly constrained) VAR estimators. A natural question is how the

small-sample bias of LP estimators compares to the small-sample bias of VAR estimators.10 To

address this, we compare Bh,LP to the small-sample bias arrising from estimating the coefficients α,

θ0, and ρ in equation (5) using ordinary least squares and computing the h-period impulse response

as θ̂0,LS (ρ̂LS)
h. This approach, which we call the “AR approach,” is analogous to the estimation

of impulse responses using VARs when the researcher has the time series data for the structural

shock of interest.

To compute the approximate bias of the AR approach, we again use the methodology of Bao
9In Appendix C, we show that setting σε = 10σν = 1 or 10σε = σν = 1 has little effect on the quality of the

approximation offered by Bh,LP . In Appendix C, we also analyze Bh,LP in the context results from a Monte Carlo

exercise under the assumption that the means of the data are known.
10The small-sample bias of VAR estimators has been explored by Nicholls and Pope (1988), Pope (1990), and

others.
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and Ullah (2007). The resulting approximation is

E
[
θ̂0,LS ρ̂

h
LS − θ0ρ

h
]
= Bh,AR +O(T−3/2) (7)

where

Bh,AR = − θ0γ

T − 1

[
hρh−1 (1 + 3ρ)− 1

2
h (h− 1) ρh−2

(
1− ρ2

) ]
and γ =

σ2ν
σ2ν + θ20σ

2
ε

. (8)

The details of the derivation are in Appendix B. To understand the expression for Bh,AR, it is useful

to first analyze γ. Note that γ ∈ [0, 1] is the ratio of the variance of u0,t to the one-step-ahead

variance of yt. Larger values of γ increase the magnitude of |Bh,AR|. That is, when εt explains

relatively little of the variation in yt, γ and thus |Bh,AR| are larger. Conversley, when instead νt

explains relatively little of the variation in yt, γ and thus |Bh,AR| are smaller. As the variance of

the regression error collapses, the AR approach is less biased.

Several remarks about the relationship between Bh,AR and Bh,LP are in order. First, B0,AR =

B0,LP = 0. Second, in general, the values of Bh,AR and Bh,LP will not coincide for h > 0. Third, for

ρ ∈ (0, 1), Bh,AR cannot be signed for h > 0, unlike Bh,LP which is never positive. Fourth, γ affects

Bh,AR, but does not enter Bh,LP . That is, the approximate bias in the LP is not effected by the

amount of variation in yt that is explained by εt. While the magnitude and sign of Bh,AR −Bh,LP

depend on parameters of the AR(1) process and h, it is useful to consider a particular value of

γ = 1+ρ
1+3ρ , which sets B1,AR = B1,LP . Then, for ρ ∈ (0, 1) and h > 1,

Bh,AR = − 1

T − 1

(
hρh + hρh−1

)
+

1

T − 1

1

2
h (h− 1) ρh−2 1 + ρ

1 + 3ρ

(
1− ρ2

)
> Bh,LP . (9)

So, for any γ < 1+ρ
1+3ρ , Bh,AR − Bh,LP < 0 for all h > 1. This result illustrates that there are

parameter values for which the AR approach can be uniformly less negative than the LP approach.

However, it is difficult to know whether these conditions hold without knowledge of the data

generating process. Above all, the AR(1) example illustrates that the the small-sample bias in LPs

is different than the small-sample bias in VARs.11

3.3 A Bias Corrected Estimator

Analytic Result 1 suggests a bias-corrected estimator for θh using plug-in estimators for θj and Σc,j .

With enough data to calculate θ̂h,LS , all of the needed estimates of θj and Σc,j are easily computed.
11In VARs, researchers commonly employ the parametric bootstrap to correct for bias (see, for example, Kilian

(1998)). However, in an LP, researchers would need to use, for example, a block bootstrap. With sample sizes

typically seen the literature that uses LPs, these bootstrapping methods are likely to perform poorly.
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Notably, the researcher could bias correct the coefficients using the least-squares estimates of θj .

We denote the estimator of θh constructed in this way as θ̂h,BC . Alternatively, the researcher could

iterate on this bias correction, effectively jointly correcting the impulse response estimate. We

denote this estimator as θ̂h,BCC . If θj all have the same sign, then the bias correction used to

construct θ̂h,BCC will be larger than the bias correction used to construct θ̂h,BC .

Here, we analyze how well θ̂h,BCC performs in the context of our AR(1) example data generating

process. The left column of Figure 3 shows the Monte Carlo estimate Eθ̂h,BCC − θh, for different

values of ρ and T , as a function of h. The bias corrected estimator does eliminate the bias entirely,

particularly for low T and large ρ. That said, it reduces the bias relative to the least-squares

estiamtor. For example, when ρ = 0.99 and T = 50, θ̂h,BCC still exhibits a bias of around −0.3 for

moderate h, the corresponding bias for θ̂h,LS is around −0.6 (see Figure 2). So θ̂h,BCC represents

a substantial improvement.

The right column of Figure 3 shows the MSE ratio of θ̂h,BCC relative to θ̂h,LS . A number larger

than unity indicates that the MSE of θ̂h,BCC is larger than the MSE of θ̂h,LS . While θ̂h,BCC does

a better job, on average, of correcting for the bias when ρ is smaller, the relative MSE is smaller

for larger ρ. Intuitively, when ρ is large, the bias of the LP estimator is also large, and the mean

bias correction is enough to reduce the MSE, even though the bias correction procedure introduces

volatility into the estimator. Overall, the MSE metric does not uniformly favor either θ̂h,LS or

θ̂h,BCC .

It ought to be mentioned that the potential for asymptotic bias from parametric models is a

key reason that many investigators turn to LPs in the first place. It stands to reason that these

researchers exhibit preferences that give more weight to the bias reduction than lower variance

estimators. Thus, θ̂BCC , which reduces the finite sample component of this bias, may be attractive

even if it exhibits a higher variance (and higher MSE) than its least-squares counterpart.

4 Extension to panel data

Here, we extend our analysis to the setting of panel data with a fixed number of entities, I. We let

the subscript i indicate data for a particular panelist (for example, yi,t). We consider the setting

where the entities have common slope coefficients, but entity-specific intercepts, which is a common

setup in the LP literature using panel data. That is,

yi,t+h = αi,h + [εi,t, c
′
i,t−1, c

′
t−1]βh + ui,h,t. (10)
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The vector ct−1 is included to accommodate common regressors. We set up the estimation problem

as stacked least squares, which is overwhelmingly the most common approach in the related LP

literature that uses panel data. We refer to the estimator of the impulse response function at

horizon h as θ̂h,LS,I .

4.1 The approximate bias of the least-squares estimator with panel data

To fix notation, let

xi,t = [1 (i = 1) , 1 (i = 2) , . . . , 1 (i = I) , εi,t, ci,t−1, ct−1]
′ . (11)

wt =
[
ε′1,t, ε

′
2,t, . . . , ε

′
I,t, c

′
1,t, c

′
2,t, . . . , c

′
I,t, c

′
t

]′
. (12)

We make the following assumption, which is analogous to Assumption 1.

Assumption 3. The series wt is strictly stationary and ergodic. The series has a purely nonde-

terministic Wold representation with innovations ωt = [ε1,t, ε2,t, . . . , εI,t, ν
′
t]
′. Additionally, for all

i,

• εi,t is independent of εk,t+j for all j ̸= 0 and all k.

• εi,t is independent of νt+j for all j.

• E[
∑I

i=1 xi,tx
′
i,t] is invertible, and E[||

∑I
i=1 xi,tx

′
i,t||2] is finite.

Our assumptions about εi,t are meant to formalize what we mean by a structural shock.12

Additionally, as was the case without panel data, the linearity of wt facilitates the derivation of

analytic expressions for the approximate bias. One consideration that is specific to panel data is

the way that εj,t affects yi,t+h.

In addition, we make the following assumption, which is analogous to Assumption 2.

Assumption 4. For every i, the regression error ui,h,t is independent of εk,t−j and νt−j−1 for all

k and j ≥ 0.

This assumption formalizes what we mean by conditioning inference on information available

at time t − 1 by including ci,t−1 and ct−1 in the LP. Additionally, Assumption 4 requires that if

εj,t affectes yi,t+h, it only does so through correlation with εi,t. In Appendix A.3, we derive the

following analytic result.
12In the event that a researcher wants to investigate the response of yi,t+h to a structural shock that is common to

all panelists, εt, straightforward modification of our setup so that εi,t = εt will accommodate.
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Analytical Result 3 (Bias in panel LPs with controls.). Under Assumptions 3-4, the approximate

bias of θ̂h,LS,I is given by

E
[
θ̂h,LS,I − θh

]
= Bh,LP,I +O

(
T−3/2

)
, (13)

where

Bh,LP,I = − 1

T − h

h∑
j=1

[1 + ϑj ] θh−j and ϑj =
1

I2

I∑
i=1

I∑
k=1

tr
{
Σ−1
c,0,IΣc,j,k,i

}
σε,i,k

σ2ε,I
. (14)

Here, σ2ε,I = 1
I

∑I
i=1 σε,i,i, σε,i,k = E[εi,tεk,t], Σc,0,I = 1

I

∑I
i=1Σc,0,i,i, Σc,j,i,k = E[c̃i,t−j c̃

′
k,t], and

c̃i,t = [c′i,t, c
′
t]
′. Additionally, B0,LP,I = 0.

A few comments are in order regarding equation (14). First, as was the case without panel

data and because the least-squares estimator is consistent, the approximate bias goes to zero as

the sample size goes to infinity. Second, the cross-autocovariance of the control variables plays a

role in the approximate bias. Third, as was the case without panel data, if the IRF of interest is

a persistent IRF and the controls are positively autocorrelated, the bias is larger. Fourth, even

with controls that are independent across entities or over time, the bias does not go to zero as the

number of panelists increases, holding T fixed.

It is instructive to consider the implications of estimating the αi,h’s. In Appendix A.3, we show

that the contribution to Bh,LP,I from estimating the αi,h’s is given by

− 1

T − h

T−h∑
j=1

θh−j . (15)

As a result, if the αi,h’s (means of the data) are known, increasing the number of panelists, I, can

make Bh,LP,I approach zero.

4.2 An AR(1) example with panel data

Here, we examine the approximate bias in panel LPs using independent AR(1) data generating

processes for yi,t. In particular, we assume that

yi,t = αi + θ0εi,t + ρyi,t−1 + νi,t with εi,t
iid∼ N(0, σ2ε) and νi,t

iid∼ N(0, σ2ν). (16)

Further, we assume that ρ ∈ (0, 1). The researcher observes {(yi,t, εi,t)}Tt=1 for i = 1, 2, . . . , I, and

estimates the impulse response of yi,t+h to εi,t for h = 0, . . . , H using the LP defined in equation 10

with ci,t−1 = yi,t−1 and ct−1 = ∅. This example satisfies Assumptions 3 and 4.
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4.2.1 Explicit approximate bias with panel data

Noting that θh = θ0ρ
h, it is easy to see from Analytic Result 3 that the approximate bias of the

panel LP is given by

Bh,LP,I = − 1

T − h

h∑
j=1

(
1 +

1

I
ρj
)
θ0ρ

h−j = − θ0
T − h

(
1− ρh

1− ρ
+

1

I
hρh

)
. (17)

Notice that the expression for Bh,LP,I in equation (17) is similar to the expression for Bh,LP in

equation (6), except that the second term in parentheses is divided by I. This result reflects

the common AR coefficient across yi,t and our assumption that yi,t is independent of yj,t for i ̸=

j. Equation (17) also illustrates that adding panelists with uncorrelated data can reduce the

approximate bias. At the same time, Bh,LP,I clearly does not approach zero as I increases. It

is worth noting that when ρ is near unity, the first term in parentheses in equation (17) will be

relatively large, and increasing I will have little effect on the approximate bias.

4.2.2 Quality of the approximation with panel data

Here we analyze how well Bh,LP,I approximates the small-sample bias of θ̂h,LS,I . Figure 4 shows

Bh,LP,I along with the sample mean of a Monte Carlo exercise conducted using the data generating

process in equation (16).13 The figure shows results for different values of ρ and T and is constructed

under the assumption that I = 50. This choice of I is reasonably representative in the context

of the LP literature that uses panel data because many studies consider either state-level data or

country-level data for advanced economies. Because all of the values of ρ shown imply that the

data are persistent, the figure is very similar for smaller values of I.

Notably, Figure 4 is similar to Figure 2. As a result, we conclude that for empirically relevant

sample sizes, Bh,LP,I offers a reasonable approximation to the bias in LPs, though the quality of

the approximation is somewhat worse for smaller values of T and larger values of ρ. Additionally,

we can conclude that for ρ near unity, adding a panel dimension to the LP does not materially

reduce small-sample bias.

4.3 A bias-corrected estimator with panel data

Analytic Result 3 lends itself to constructing bias-corrected estimators for θh using plug-in estima-

tors for θj and Σc,i,j . However, the number of cross-autocovariances that are required to construct
13For the Monte Carlo exercises, we set σε = σν = 1 and θ0 = 1.
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the values of Σc,i,j is large. Because the term of the approximate bias involving Σc,i,j is multiplied

by I−1, in applications with reasonably large I, researchers could instead use

Bh,LP,I ≈ − 1

T − h

h∑
j=1

θh−j . (18)

While this expression is not an exact expression for the approximate bias to O(T−1), it could be

used to improve upon the least-squares estimator by picking up some (or potentially most) of the

approximate bias. We denote the estimator of θh constructed in this way as θ̂h,BC,I . Alternatively,

the researcher could iterate the bias correction on all values of θh. We denote this estimator as

θ̂h,BCC,I .

Here, we analyze how well performs θ̂h,BCC,I performs in the context of our AR(1) example data

generating process from equation (16). The left column of Figure 5 shows the Monte Carlo average

of θ̂h,BCC,I − θh, for different values of ρ and T , as a function of h. Clearly, the bias-corrected

estimator performs better for smaller values of ρ and larger values of T .

The right column of Figure 5 shows the MSEs of θ̂h,BCC,I relative to the MSEs associated

with θ̂h,LS,I . Note that a number larger than unity indicates that the MSE of θ̂h,BCC,I is larger

than the MSE of θ̂h,LS,I . Notably, θ̂h,BCC,I leads to a smaller MSE than θ̂h,LS,I . Intuitively, the

reason is that the values θ̂h,LS,I has an normal asymptotic limiting distribution when multiplied by
√
TI, so in small samples it has relatively little variance when used as a plug in estimator for the

approximate bias, which converges at rate
√
T . Of course, estimating the values of Σc,i,j to capture

the entire approximate bias would add additional variance.

5 Bias in the Context of a Medium-Scale Monetary Time Series

In this section, we conduct a Monte Carlo study using a larger time series model. To construct

an empirically realistic data generating process, we follow Christiano et al. (2005)—subsequently

referred to as CEE—and estimate a nine variable VAR(4). We focus on the dynamic effects of

a monetary policy shock, identified recursively as in CEE. Figure 6 shows the impulse responses

of real GDP, price level, and the federal funds rate to a monetary policy shock. The estimated

VAR(4) serves as the data generating process for our Monte Carlo exercise.14

14The inflation responses are computed ex post as the (annualized) percent change in the price level. Note also that

the VAR, at the MLE, is stationary. The magnitudes of the five largest eigenvalues are [0.99, 0.97, 0.97, 0.95, 0.95].

More details about the VAR are available in the Appendix.
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Our Monte Carlo study examines the properties of both the standard least-squares estimator

and our bias-corrected LP for estimating these three impulse responses. We assume that the

econometrician observes sets of time series of length T of the dependent variable yt—either the

log level of real GDP, the log level of prices, or the federal funds rate—sets of controls ct, and the

monetary policy shock εt. In this section, we assume that the vector of controls is “full” in the

sense of containing the four lags of all variables as in the VAR. Results under different assumptions

about the conditioning set are broadly similar and are available in Appendix E. The sample sizes

vary, as in the earlier simulations, with T ∈ {100, 200}. We simulate 2000 trajectories from the

VAR for each sample size T . Each simulation is initialized from a random point in the stationary

distribution.

Figure 7 displays Monte Carlo estimates of the bias of θ̂h,LS and θ̂h,BCC (the dashed and solid

lines in left column, respectively) and the MSE ratio (right column) for output, the price level,

and the federal funds (rows). Focusing first on the bias, we see that all of the estimated impulse

responses exhibit bias, with largest bias associated with the impulse response of of real GDP. As

expected the bias is decreasing in the sample size T with the red lines (T = 200) generally closer

to zero than the green lines (T = 100). Interestingly, unlike for the univariate AR(1) example, this

bias is not always—or even typically—downwards. In nearly all cases the bias of θ̂h,BCC is smaller

in magnitude than the bias of θ̂h,LS , indicating that the bias correction works well. But as with

the univariate AR(1) example, the bias corrected estimator does not completely eliminate the bias.

Turning to the relative MSE, displayed the right column of Figure 7, we see that neither θ̂h,LS
nor θ̂h,BCC is uniformly best. For example, for real GDP the MSE of θ̂h,BCC is less than that of

θ̂h,LS for h ∈ [4, 12] as the bias term dominates the MSE calculation at those horizons. When the

bias associated with θ̂h,LS is relatively small (here at small or large h), this estimator is preferred in

an MSE sense. For the price level the bias switches signs around h ≈ 14, so for these horizons θ̂h,BCC

has a relatively high MSE. Finally, for the federal funds rate, again neither estimator dominates

across all h. Overall, the MSE criterion does not definitively select either θ̂h,LS or θ̂h,BCC as best.15

15In the Appendix, we compare the LP estimators to those of VAR(1) and VAR(4) models.
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6 Some considerations related to standard errors

The asymptotic covariance matrix of the least-squares estimator of the parameters in equation (1)

is given by

VT−h =

(
1

T − h

T−h∑
t=1

E [x̃tx̃t] ′

)−1

ST−h

(
1

T − h

T−h∑
t=1

E [x̃tx̃t] ′

)−1

(19)

where x̃ = [1, x′t]
′ and

ST−h =
1

T − h

T−h∑
t=1

T−h∑
s=1

E
[
x̃tx̃

′
suh,tuh,s

]
. (20)

The challenging piece of the standard-error calculation is estimating ST−h. Since Jordà (2005), the

conventional wisdom has been that heteroskedasticity and autocorrelation robust (HAR) standard

errors are necessary because the regression residuals of LPs are autocorrelated. A popular choise of

estimator for ST−h in the LP listerature is the estimator of Newey and West (1987) (NW). Because

the NW estimator tends to understate sampling uncertainty, work by Müller (2014), Sun (2014),

and Lazarus et al. (2018) have suggested alternatives. However, under Assumptions 1 and 2, the LP

regression score—the product of the εt and the LP regression residuals—is serially uncorrelated.16

Thus, in large samples the (heteroskedasticity-robust) estimator of Huber (1967) and White (1980)

(HW) is valid. Here, we consider the small sample implications of using the NW—i.e., setting

m = 0—estimator when HW will do.

Because we assume that εt is independent of ct−1, to compute the standard error for θ̂h,LS the

only relevant element of ST−h is the diagonal element in the same position as θh, which is given by

1

T − h

T−h∑
t=1

T−h∑
s=1

E
[
εt(yt+h − αh − x′tβ)εs(ys+h − αh − x′sβ)

]
=

1

T − h

T−h∑
t=1

T−h∑
s=1

γh,|t−s|. (21)

The NW estimatorof this value with bandwidth m is given by

γ̂h,0 +
m∑
ℓ=1

(
1− ℓ

m+ 1

)
T − h− ℓ

T − h
2γ̂h,ℓ. (22)

where

γ̂h,ℓ =
1

T − h− ℓ

T−h∑
t=ℓ+1

εt(yt+h − αh − x′tβ)εt−ℓ(yt−ℓ+h − αh − x′t−ℓβ). (23)

16Montiel Olea and Plagborg-Møller (2021) use lag augmentation to achieve (population) residualized regressors,

whereas our setup does not require this step because we assume the researcher has access to εt.
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Note that γ̂h,ℓ is the sample autocovariance of the regression score. Under Assumptions 1 and 2,

γh,ℓ = 0 for ℓ > 0. As a result, setting m > 0 is not asymptotically necessary to conduct valid

inference in our LP setup. However, using the NW estimator may have implications for inference

in small samples because γ̂h,ℓ may have small sample bias akin to the bias we have documented in

LP estimators of impulse response functions.

6.1 Explicit approximate bias of the autocovariance of the regression score

To investigate the small-sample implications of using the NW estimator when HW will do, we focus

attention on the case where θh = 0 for all h. We choose this setup for two reasons. First, the null

hypothesis that θh = 0 is often of interest for researchers using LPs and our derivation would be

correct under that hypothesis. Second, the assumption that θh = 0 facilitates deriving expressions

for the approximate bias in γ̂h,ℓ. In Appendix D we show that, under suitable regularity conditions,

when αh, βh, and γh,ℓ are jointly estimated

Eγ̂h,ℓ − γh,ℓ = − 1

T − h− ℓ
γh,0 +O

(
T−3/2

)
. (24)

It is immediate that increasing m in the NW estimator is likely to decrease the value of the element

of ŜT−h that is relevant to construct standard errors for the least-squares estimator in our LP

setting decreases, which reduces the size standard error.17

6.2 Bias in SEs in the context of an AR(1) example

To explore the small sample bias of standard errors for LPs, we again use the AR(1) data generating

process in equation (5) for Monte Carlo simulations. We consider two specifications. In the first

specification, we assume that θ0 = 0, σ2ε = 1, σ2ν = 2. This specification conforms to our assumption

in the previous subsection that θh = 0 for all h. In the second specification, we assume that θ0 = 1,

σ2ε = 1, σ2ν = 1. This specification has θh ̸= 0 for all h, but maintains the same variance of yt as in

the first specification. We set ct−1 = yt−1.18

17In Appendix D, we show that, for ℓ > 0, the approximate bias in γ̂h,ℓ is the same in the case when αh is known.

Additionally, we derive the approximate bias in the case when controls are not included in the LP. The expression

for the approximate bias in terms of γ0,h is unchanged.
18We focus on HW and NW estimators to isolate the effect of bias in the estimated regression score autocovariances

and also because of their popularity in practice. In fact, here the errors are homoskedastic, so heteroskedasticity-

robust estimators are unnecessary.
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We fix the horizon of the LP to be h = 10 and estimate γ10,ℓ using the fitted regression scores

from the LPs.19 Figure 8 shows the Monte Carlo mean of γ̂10,ℓ for ℓ > 0 in each of the two

specifications. Several remarks are in order. First, when θh = 0, the Monte Carlo mean of γ̂10,ℓ is

roughly constant for all ℓ shown, as implied by the analytic expression for the approximate bias

derived in the previous subsection. Second, when θh > 0, the Monte Carlo mean of γ̂10,ℓ is also

negative and for some h is more negative than when θh = 0. Third, regardless of whether θh = 0

or θh > 0, the Monte Carlo mean of γ̂10,ℓ is more negative for smaller values of T or larger values

of ρ.

To analyze the effect of using estimates of the autocovariance of the regression score to construct

standard errors, we consider coverage probabilities from symmetric 95% confidence intervals con-

structed using the method of HW and NW. We also consider the equally-weighted cosine (EWC)

estimator discussed in Lazarus et al. (2018), a frequency-domain-based alternative standard error

estimator.20 Figure 9 displays the coverage probabilities for both θ̂LS (left column) and θ̂BCC (right

column) of confidence intervals constructed using the three standard error estimates, with the rows

corresponding to different values of ρ. For all ρ, T the frequency-domain-based EWC delivers the

best coverage, except perhaps at h = 0. The NW-based confidence interval uniformly provides the

worst coverage. This is despite the fact that there is in fact some autocorrelation in the popula-

tion regression scores. Finally, the CI using θ̂BCC provide better coverage than those using θ̂LS

regardless of the standard errors used. Overall, our results point show the favorable performance of

the θ̂BCC and the poor performance of NW. While the EWC-based intervals are clearly superior,

in practice some users may continue to prefer the conventional time-domain based estimators, in

which case they should use HW.

6.3 Medium-Scale Model Revisited

Figure 10 displays the same coverage probabilities for the CEE real GDP (top), the price level

(middle) and the federal funds rate (bottom) for T = 100. Once again, the EWC-based confidence
19In Appendix D, we derive the bias under the assumption that αh, βh, and γh,ℓ are estimated as a part of the same

GMM system. As a result, those derivations work with only T − h− ℓ observations. For our Monte Carlo exercises

in this sub-section, we instead calculate γ̂h,ℓ using the T − h values of the fitted regression score. So, αh and βh are

estimated using T − h observations for every ℓ.
20For EWC we use a bandwidth ≈ 0.41T 2/3. One can also use the NW estimator under fixed-b asymptotics

by appropriate choice of bandwidth (≈ 1.3
√
T − h). We found this performed poorly, and so omit it from the

presentation.
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interval performs the best, with the NW-based ones perform the worst. The HW-based intervals

always perform better than the NW ones, suggesting again that among time-domain based estima-

tors of standard errors, they have the best finite sample performance. The coverage for the price

level is particularly poor at large h. θ̂h,BCC-based intervals are not uniformly better (or worse)

than θ̂h,LS ones.

7 Conclusion

We have shown that LPs can be severely biased in sample sizes commonly found in the related

literature. Our analytic expression for the approximate bias have shown that LPs are intimately

linked across horizons in small samples. We also have shown how researchers could used our

expression for the approximate bias to bias correct LPs. When correcting for bias, researchers face

a small sample tradeoff betwen bias and MSE. Using Monte Carlo analysis, we have demonstrated

that the performance of our bias corrected estimator depends on the underlying data generating

process and on the LP horizon of interest. In our Monte Carlo examples, our bias correction does

not completely correct for the bias in LPs. This results suggest that other time series models with

well-understood, effective methods for bias correction (such as VARs) may be better alternatives for

estimated impulse responses if researchers have data samples in the time dimension that are similar

to those typically found in empirical macroeconomic research. In particular, specifying time series

models that are generative for the time series of interest would allow researchers to use likelihood

methods.

We have also analyzed bias in standard errors computed for estimated impulse response func-

tions from LPs. In small samples, standard errors that rely on estimated autocovariances of the

regression score, like the NW estimator, typically understate the amount of uncertainty surrounding

the estimated impulse response functions. Recent work on standard errors in time series regres-

sion has focused on limiting distributions other than the normal distribution (see Sun (2014) and

Lazarus et al. (2018)). However, with samples typically found in the LP literature, it is difficult

to appeal to limiting critical values as accurate approximations. As a result, if researchers are

going to use NW standard errors, they may want to check to see if HW or fixed-b standard errors

would lead to different conclusions. If the HW standard errors are larger than the NW standard

errors, researchers should consider what might lead to the apparent negative autocovariance in the

regression score. Without another reasonable theory, it may be that the negative estimates of the
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autocovariance of the regression score are the result of small sample bias.
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Figure 2: Bh,LP performs well in empirically-relevant samples when yt is an AR(1).

(a) ρ = 0.90
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(b) ρ = 0.95
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(c) ρ = 0.99
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Note: the sub-figures show the value of Bh,LP and the Monte Carlo means of θ̂LS estimated on data simulated from
equation (5). We use 1,000,000 Monte Carlo simulations. We set σε = σν = 1 and θ0 = 1.
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Figure 3: Performance of Bh,BCC in an AR(1) example.
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(b) ρ = 0.90, MSE of θ̂h,BCC relative to θ̂h,LS
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(c) ρ = 0.95, Eθ̂h,BCC − θh
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(d) ρ = 0.95, MSE of θ̂h,BCC relative to θ̂h,LS
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(e) ρ = 0.99, Eθ̂h,BCC − θh
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(f) ρ = 0.99, MSE of θ̂h,BCC relative to θ̂h,LS
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Note: the sub-figures on the left show the Monte Carlo means of Eθ̂h,BCC − θh estimated on data simulated from
equation (5). The sub-figures on the right show the Monte Carlo value of the MSE of θ̂h,BCC relative to the MSE of
θ̂h,LS . A number larger than unity indicates that the MSE of θ̂h,BCC is larger than θ̂h,LS . We use 1,000,000 Monte
Carlo simulations. We set σε = σν = 1 and θ0 = 1.
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Figure 4: Bh,LP,I performs well in empirically-relevant samples when yi,t is an AR(1) and I = 50.
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(b) ρ = 0.95
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(c) ρ = 0.99
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Note: the sub-figures show the value of Bh,LP,I and the Monte Carlo means of θ̂h,LS,I estimated on data simulated
from equation (5). We use 1,000,000 Monte Carlo simulations. We set σε = σν = 1 and θ0 = 1.
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Figure 5: Performance of Bh,BCC,I in an AR(1) example.

(a) ρ = 0.90, Eθ̂h,BCC,I − θh
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(b) ρ = 0.90, MSE of θ̂h,BCC,I relative to θ̂h,LS,I

0 2 4 6 8 10 12 14 16 18 20
h

0.00

0.25

0.50

0.75

1.00

T = 50
T = 100
T = 200

(c) ρ = 0.95, Eθ̂h,BCC,I − θh
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(d) ρ = 0.95, MSE of θ̂h,BCC,I relative to θ̂h,LS,I
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(e) ρ = 0.99, Eθ̂h,BCC,I − θh
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(f) ρ = 0.99, MSE of θ̂h,BCC,I relative to θ̂h,LS,I

0 2 4 6 8 10 12 14 16 18 20
h

0.00

0.25

0.50

0.75

1.00

T = 50T = 100T = 200

Note: the sub-figures on the left show the Monte Carlo means of Eθ̂h,BCC,I − θh estimated on data simulated from
equation (16). The sub-figures on the right show the Monte Carlo value of the MSE of θ̂h,BCC,I relative to the MSE
of θ̂h,LS,I . A number larger than unity indicates that the MSE of θ̂h,BCC,I is larger than θ̂h,LS,I . We use 1,000,000
Monte Carlo simulations. We set σε = σν = 1 and θ0 = 1.
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Figure 6: Impulse Response to Monetary Policy Shock in a CEE-style VAR
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The figure displays impulse response of output (in percent), the price level (in percent), and the federal funds rate
(in percentage points) to a one standard deviation increase in the monetary policy shock (identified recursively via
the Cholesky factorization.) The solid lines display the median impulse responses and the dashed lines 90 percent
confidence intervals computed using the method of Sims and Zha (1999).
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Figure 7: Bias and MSE under a CEE-type VAR Data Generating Process
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(c) Eθ̂h,LS − θh (dashed) and Eθ̂h,BCC − θh (solid)
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(e) Eθ̂h,LS − θh (dashed) and Eθ̂h,BCC − θh (solid)
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(f) MSE of θ̂h,BCC relative to θ̂h,LS
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The sub-figures in the left column show the Eθ̂h,LS − θh (dashed lines) and Eθ̂h,BCC − θh (solid lines) for T = 100

(red) and T = 200 (green). The sub-figures in the right column show the ratio of the MSE of θ̂h,BCC relative to θ̂h,LS

for T = 100 (red) and T = 200 (green).
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Figure 8: γ̂10,ℓ is biased down in small samples when yt is an AR(1).
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(b) ρ = 0.90, θh = ρh
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(c) ρ = 0.95, θh = 0
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(d) ρ = 0.95, θh = ρh
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(e) ρ = 0.99, θh = 0
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(f) ρ = 0.99, θh = ρh
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Note: the sub-figures on the left show the Monte Carlo means of γ̂10,ℓ estimated on data simulated from equation (5)
when θ0 = 0. The sub-figures on the right show analogous figures when θ0 = 1. When θ0 = 1, we set σε = σν = 1.
When θ0 = 0, we increase σν so that the variance of yt is unchanged. We use 1,000,000 Monte Carlo simulations.
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Figure 9: Empirical Coverage of 95% Confidence Intervals

(a) ρ = 0.90, T = 100, Coverage of θ̂LS
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(b) ρ = 0.90, T = 100, Coverage of θ̂BCC
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(c) ρ = 0.95, T = 100, Coverage of θ̂LS
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(d) ρ = 0.95, T = 100, Coverage of θ̂BCC
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(e) ρ = 0.99, T = 100, Coverage of θ̂LS
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(f) ρ = 0.99, T = 100, Coverage of θ̂BCC
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Note: the sub-figures on the left show the empirical coverage of symmetric 95% confidence intervals constructed using
HW (green), NW (orange), and EWC (purple) based standard errors for θ̂LS and θ̂BCC .

31



Figure 10: Coverage of 95% Confidence Intervals under a CEE-type VAR DGP
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(b) Coverage of θ̂h,BCC
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(c) Coverage of θ̂h,LS
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(d) Coverage of θ̂h,BCC
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(e) Coverage of θ̂h,LS
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(f) Coverage of θ̂h,BCC
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Note: the sub-figures on the left show the empirical coverage of symmetric 95% confidence intervals constructed using
HW (green), NW (orange), and EWC (purple) based standard errors for θ̂LS and θ̂BCC for T = 100.
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Appendix for “Bias in Local Projections”

A Derivations of approximate bias

In this Appendix, we derive our expressions for the approximate bias of the LP estimators studied

in our paper. To do so, we employ the framework proposed by Rilstone et al. (1996) and extended

to time series models by Bao and Ullah (2007). These papers derive expressions for finite-sample

moments for a wide class of estimators via an approximation of an estimator β̂ of the form:

β̂ − β = a−1/2 + a−1 +Op(T
−3/2). (A.1)

Assumption 1, combined with the leaast-squares estimation framework satisfies the necessary as-

sumptions of Rilstone et al. (1996). Assumption 2 facilitates the derivation of tractable expressions

for the approximate bias.

In this Appendix, we use the notation of Bao and Ullah (2007) where possible. For each

derivation, we will cast the least-squares estimator as a generalized method of moments (GMM)

estimator with moment conditions given by qh(β; ξt), where β = [αh, β
′
h]

′ and ξt = [yt+h, x
′
t]
′ is the

data vector for the LP model. The GMM empirical moments are given by

ψh,T−h(β; {ξt}T−h
t=1 ) =

1

T − h

T−h∑
t=1

qh(β; ξt). (A.2)

Let ▽iA(β) be the matrix of ith order partial derivatives of A with respect to β. In what follows,

we write ψh,T−h(β; {ξt}T−h
t=1 ) as ψh,T−h and qh(β; ξt) as qh,t. Define the series of matrices

Hi = ▽iψh,T−h and H i = E [Hi] with Q = H
−1
1 , V = H1 −H1. (A.3)

Bao and Ullah (2007) show that the expressions for the terms in (A.1) are given by:

a−1/2 = −Qψh,T−h and a−1 = −QV a−1/2 −
1

2
QH2

[
a−1/2 ⊗ a−1/2

]
. (A.4)

We are interested in computing

B = E[a−1/2 + a−1] = E {QV Qψh,T−h} − E
{
1

2
QH2 [(Qψh,T−h)⊗ (Qψh,T−h)]

}
, (A.5)
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which we refer to as the approximate bias. Throughout this Appendix, and without loss of gen-

erality, we assume all data have mean zero. Before proceeding, we introduce notation for second

moments of the data

σ2ε = E
[
ε2t
]
, σ2y = E

[
y2t
]
, Σc,j = E

[
ct−jc

′
t

]
. (A.6)

A.1 LP when means are estimated

In the LP model when means are estimated, the moment conditions for the least-squares estimator

are

E

 yt+h − αh − x′tβh

xt (yt+h − αh − x′tβh)

 = 0. (A.7)

Because, in the notation of Bao and Ullah (2007), H2 = 0, to calculate Bh,LP we only need to

calculate the second element of E [QH1Qψh,T−h], which is given by

E [QH1Qψh,T−h]2 = − 1

(T − h)2

T−h∑
t=1

T−h∑
s=1

E [ϕ1(t, s) + ϕ2(t, s) + ϕ3(t, s)] , (A.8)

where

ϕ1(t, s) =
εt
σ2ε

(
ys+h − αh − x′sβh

)
, (A.9)

ϕ2(t, s) =

(
εt
σ2ε

)2

εs
(
ys+h − αh − x′sβh

)
, (A.10)

ϕ3(t, s) =
εt
σ2ε
c′t−1Σ

−1
c,0cs−1

(
ys+h − αh − x′sβh

)
. (A.11)

Consider first E[ϕ1(t, s)]. When t ≤ s this expectation equals zero by Assumption 2. When t > s+h

this expectation is zero by Assumption 1. Finally, when s < t ≤ s+h, then direct calculation yields

E[ϕ1(t, s)] = θs+h−t. Next consider E[ϕ2(t, s)]. If t = s, then under Assumption 2, this expectation

is zero. If t ̸= s, then the expectation is again zero owing to Assumptions 1 and 2. Finally, consider

E[ϕ3(t, s)]. When t > s+ h, or t ≤ s E [ϕ3(t, s)] = 0 by Assumptions 1 and 2. When s < t ≤ s+ h

E [ϕ3(t, s)] =E
[
εt
σ2ε
c′t−1Σ

−1
c,0cs−1

(
uh−(t−s),t + x′tβh−(t−s) − x′sβh

)]
(A.12)

=E
[
εt
σ2ε
c′t−1Σ

−1
c,0cs−1

(
ut,h−(t−s) + x′tβh−(t−s)

)]
(A.13)

=E
[
εt
σ2ε
c′t−1Σ

−1
c,0cs−1

(
x′tβh−(t−s)

)]
(A.14)

=E
[
1

σ2ε
Et−1

[
εt
(
x′tβh−(t−s)

)]
tr
{
c′t−1Σ

−1
c,0cs−1

}]
(A.15)

=θh−(t−s)tr
{
Σ−1
c,0Σc,t−s

}
. (A.16)
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Note that equation (A.12) follows from the definition of uh,t, equation (A.13) follows from As-

sumption 1, equation (A.14) follows from Assumption 2, equation (A.15) follows from the law of

iterated expectations, and equation (A.16) follows from Assumption 1. Combining these resulting

gives expression for Bh,LP given in equation (3).

It is instructive to understand the effect of estimating αh. To do so, we assume the mean is

known—so that the intercepts of the regressions αh are known—and compare the bias of the LP

estimator to our benchmark specification. The moment conditions for the LP are

E
[
xt
(
yt+h − x′tβh

)]
= 0 (A.17)

We are interested in the first element of βh. Similar calculation to the case when αh is estimated

yields

E[θ̂h,LS − θh] = E
1

(T − h)2

T−h∑
t=1

T−h∑
s=1

[ϕ2(t, s) + ϕ3(t, s)] +O(T−3/2), (A.18)

where ϕ2 and ϕ3 are define in A.10 and A.11. It is immediate that the contribution to Bh,LP from

estimating the mean is given by

− 1

T − h

T−h∑
j=1

θh−j . (A.19)

A.2 LP with no controls

It is not necessary to include controls in equation (1) to have a consistent estimator of θh, and a

sub-set fo the related LP literature does not include contorls. In this sub-section, we derive the

approximate bias when controls are not included.

To do this, we maintain Assumption 1, but drop Assumption 2, and set ct−1 to the empty

vector. We assume that the following moment conditions hold

E

 yt+h − αh − θhεt

εt(yt+h − αh − θhεt)

 = 0. (A.20)

To get an expression for the approximate bias, the arguments in A.1 go through under the obvious

modifications. The resulting approximate bias is

− 1

(T − h)2

T−h∑
t=1

T−h∑
s=1

E [ϕ1(t, s) + ϕ2(t, s)] , (A.21)

where ϕ3(t, s) does not appear because no controls are included.
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Consider first E[ϕ2(t, s)]. When t > s+h this expectation is zero by Assumption 1. When t = s,

this expectation is zero by the moment condition. When s < t ≤ s+ h or t < s, direct calculation

yields E[ϕ1(t, s)] = θs+h−t. Next consider E[ϕ1(t, s)], which is zero by the moment condition. We

can now state the approximate bias for the case without controls

Analytical Result 4 (Bias in LPs without controls.). Under Assumption 1 and under the as-

sumption that equation A.20 holds, the approximate bias of the least-squares estimator of θh

− 1

T − h

T−h−1∑
j=1

(
1− j

T − h

)
(θh+j + θh−j) . (A.22)

A few comments are in order. First, the approximate bias is a function of the impulse response

at all horizons up to T −1. Relative to the case with controls, this means that the impulse response

at many more horizons, including those beyond the horizon of interest, affect the approximate bias.

Second, it is not feasible to estimate all of the terms that enter the expression for the approximate

bias with a finite sample. Any attempt to bias correct would need to truncate j. Third, it is

not the case that the approximate bias without controls is necessarily smaller or larger than the

approximate bias with controls. Instead, the magnitude of the bias depends on the particular

regression models.

It is instructive to understand the effect of estimating αh. To do this, we assume that the means

of the data (and thus αh) are known. For the LS estimator, we assume that the following moment

condition holds

E
[
εt(yt+h − θhεt)

]
= 0. (A.23)

The approximate bias is

− 1

(T − h)2

T−h∑
t=1

T−h∑
s=1

E [ϕ2(t, s)] , (A.24)

where ϕ2 is defined in equation (A.10). Note that ϕ1(t, s) does not appear in this expression because

the means are known, and ϕ3(t, s) does not appear because no controls are included. It is immediate

that from the arguments in the previous sub-section that when controls are not included, all of the

approximate bias is due to estimating the mean.

A.3 LP with panel data

We use the notation defined in section 4. The moment conditions for the estimator are

0 = E
[
1

I

∑I
i=1 xi,t

(
yi,t+h − x′i,tβh

) ]
. (A.25)
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Applying the results of Bao and Ullah (2007), the approximate bias of θ̂h,LS,I is given by

− 1

(T − h)2

T−h∑
t=1

T−h∑
s=1

E [Φ1(t, s) + Φ2(t, s) + Φ3(t, s)] , (A.26)

where

Φ1(t, s) = E

{
1

I

I∑
i=1

εi,t
σ2ε,I

(
yi,s+h − x′i,sβh

)}
(A.27)

Φ2(t, s) = E

1

I

I∑
i=1

ε2i,t(
σ2ε,I

)2 1I
I∑

k=1

εk,s
(
yk,s+h − x′k,sβh

) (A.28)

Φ3(t, s) = E

{
1

I

I∑
i=1

εi,t
σ2ε,I

1

I

I∑
k=1

c̃′i,t−1Σ
−1
c,0,I c̃k,s−1

(
yk,s+h − x′k,sβh

)}
(A.29)

Consider Φ1(t, s). Under Assumptions 3 and 4, Φ1(t, s) = 0 when t ≤ s or t > s+h. If s < t ≤ s+h,

Φ1(t, s) = θs+h−t. Consider Φ2(t, s). Under Assumptions 3 and 4, Φ2(t, s) = 0 for all t and

s. Consider Φ3(t, s). Under Assumptions 3 and 4, Φ3(t, s) = 0 if t ≤ s or t > s + h. When

s < t ≤ s+ h

Φ3(t, s) = E

{
1

I

I∑
i=1

εi,t
σ2ε,I

1

I

I∑
k=1

c̃′i,t−1Σ
−1
c,0,I c̃k,s−1

(
uk,h−(t−s),t + x′k,tβh−(t−s)

)}
(A.30)

= E

{
1

I

I∑
i=1

εi,t
σ2ε,I

1

I

I∑
k=1

c̃′i,t−1Σ
−1
c,0,I c̃k,s−1x

′
k,tβh−(t−s)

}
(A.31)

= E

{
1

I

I∑
i=1

1

σ2ε,I

1

I

I∑
k=1

Et−1

[
εi,tx

′
k,tβh−(t−s)

]
c̃′i,t−1Σ

−1
c,0,I c̃k,s−1

}
(A.32)

=
1

I

I∑
i=1

1

I

I∑
k=1

tr
{
Σ−1
c,0,IE

[
c̃k,s−1c̃

′
i,t−1

]} σε,i,k
σ2ε,I

θs+h−t. (A.33)

Note that A.30 follows from the defnition of uk,h−(t−s),t and Assumption 3, A.31 follows from As-

sumption 4, A.32 follows from the law of iterated expectations, and A.33 follows from Assumptions

3 and 4. Combining these observations delivers teh results reported in Analytic Result 3.

It is instructive to understand the effect of estimating αi,h. In this case, the moment conditions

are

0 = E
[
1

I

∑I
i=1 [c′i,t, c

′
t]
′
(
yi,t+h − x′i,tβh

) ]
, (A.34)

where the first I elements of βh are known. Algebra similar to the previous sub-section yields that

the approximate bias is given by

− 1

(T − h)2

T−h∑
t=1

T−h∑
s=1

E [Φ2(t, s) + Φ3(t, s)] , (A.35)
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where Φ1(t, s) and Φ2(t, s) are as defined in equations (A.28) and (A.29). It is immediate that the

contribution to Bh,LP,I from estimating the mean is given by

− 1

T − h

T−h∑
j=1

θh−j . (A.36)

B Analytic comparison between LP and parametric model

Here, we provide details of the derivation of the bias in the AR estimator θ̂0ρ̂h discussed in Sec-

tion 3.2.3 and under the data generating process given in equation 5. To derive the bias, we work

with the following moment conditions

E


yt − α− εtθ0 − ρyt−1

εt (yt − α− εtθ0 − ρyt−1)

yt−1 (yt − α− εtθ0 − ρyt−1)

θh − θ0ρ
h

 = 0. (B.1)

Note that Assumptions 1 and 2 are satisfied. For notational ease, and without loss of generality we

assume that E[yt] = 0, meaning αh = 0.

With appropriately defined vectors and matrices analogous to those discussed in Appendix A

that also are in the notation of Bao and Ullah (2007), E
[
Q
(
H1 −H1

)
Qψh,T−1

]
4

is given by(
1

T − 1

)2 T∑
t=2

T∑
s=2

E
[
−
(
ρh

σ2ε
εt +

θ0hρ
h−1

σ2y
yt−1

)(
1 +

εtεs
σ2ε

+
yt−1ys−1

σ2y

)
νs

]
. (B.2)

It can be shown that this quantity can be expressed as

E
[
Q
(
H1 −H1

)
Qψh,T−1

]
4
= − 1

T − 1
θ0hρ

h−1γ(1 + 3ρ) +O(T−3/2), (B.3)

where γ = σ2
ν

σ2
ν+θ20σ

2
ε
.

Additionally,[
1

2
QH2

[
a−1/2 ⊗ a−1/2

]]
4

=− 1

2
hρh−1

(
1

T − 1

)2 T∑
t=2

T∑
s=2

εs
σ2ε
νs
yt−1

σ2y
νt

− 1

2
hρh−1

(
1

T − 1

)2 T∑
t=2

T∑
s=2

εt
σ2ε
νt
ys−1

σ2y
νs

− 1

2
θ0h (h− 1) ρh−2

(
1

T − 1

)2 T∑
t=2

T∑
s=2

ys−1

σ2y
νs
yt−1

σ2y
νt (B.4)

=− 1

2
θ0h (h− 1) ρh−2 1

T − 1
γ
(
1− ρ2

)
. (B.5)
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Then

Bh,AR = − 1

T − 1
γθ0hρ

h−1

[
(1 + 3ρ)− 1

2
(h− 1)

(
1− ρ2

)
ρ−1

]
, (B.6)

which is the expression given in Section 3.2.3.

C Additional analysis in the context of simple data generating

processes

In section 3.2 we analzed Bh,LP in the context of an AR(1) data generating process given by

equation (5). In this Appendix, we analyze the quality of the approximation offered by Bh,LP when

means are known, different parameterizations of equation (5) and an AR(2) model that generates

hump-shaped impulse response functions.

C.1 The quality of the approximation Bh,LP in an AR(1) when the means are
known

Here, we analyze the quality of the approximation Bh,LP in the context of the AR(1) data gener-

ating process in equation (5) when the means are known. Uner this assumption, figure C.1 shows

analogous results to those reported in figure 2.

As in the case when αh is estimated, for ρ = 0.9 and ρ = 0.95, Bh,LP is a good approximation

to the exact finite-sample bias in θ̂h,LS for all h shown. The quality of the approximation improves

somewhat as T increases. Clearly, when ρ = 0.99, Bh,LP is not as good of an approximation as it is

for smaller values of ρ. We conclude that when the means are known and for empirically relevant

sample sizes, Bh,LP offers a reasonable approximation to the bias in LPs, though the quality of the

approximation is somewhat worse for smaller values of T and larger values of ρ.

C.2 Alternative parameterizations of the AR(1) data generating process

In the main text, we assumed σε = σν = 1. Here, we consider different settings.

First, consider the case where σε = 10σν = 1. In this case, the structural shock ε explains

almost all of the variation in yt. Using this parameterization, figure C.2 shows analogous results to

those reported in figure 2. Note that the values of σε and σν do not appear in Bh,LP . So, the line

representing Bh,LP are identical in figures 2 and C.2. Additionally, it is apparent that the Monte

Carlo means of θ̂LS are also very similar when comparing figures figures 2 and C.2.
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Figure C.3 shows analogous results to those reported in Figure C.3. While the average bias

correction (left panels) is little changed by the change in σν , the perfmance of θ̂h,BCC improves

relative to θ̂h,LS as measured by RMSE.

Next, consider the case where 10σε = σν = 1. In this case, the structural shock ε explains

almost none of the variation in yt. Using this parameterization, figure C.4 shows analogous results

to those reported in figure 2. Note that the values of σε and σν do not appear in Bh,LP . So, the

line representing Bh,LP are identical in figures 2 and C.4. Additionally, the Monte Carlo means of

θ̂LS are also similar when comparing figures figures 2 and C.4.

C.3 An AR(2) example

Here, we analyze the performance of the approximation offered by Bh,LP using a simple AR(2)

model. We specify the data generating process so that

yt = (ρ+ ψ)yt−1 − ψρyt−2 + θ0εt + νt (C.1)

where εt ∼ N(0, σ2ε), νt ∼ N(0, σ2ν), and each is independent of each other and over time. We set

ψ = 0.4 and θ0 = 1. For the values of ρ that we consider, this data generating process delivers hump-

shaped impulse response functions. This particular formulation of the AR(2) is useful because ρ

plays a similar role to the AR(1) in that it determines the persistence of yt. We consider different

values for ρ within each figure. The LP is specified so that xt = [εt, yt−1, yt−2]
′.

As was the case for the AR(1), For ρ = 0.9 and ρ = 0.95, Bh,LP is a good approximation to

the exact finite-sample bias in θ̂h,LS for all h shown. The quality of the approximation improves

somewhat as T increases. Clearly, when ρ = 0.99, Bh,LP is not as good of an approximation as

it is for smaller values of ρ. Nevertheless, even with ρ = 0.99 and T = 50 Bh,LP captures salient

features of the finite-sample bias, including that it is growing in magnitude with h over the values

of h shown. We conclude that the quality of the approximation is somewhat worse for smaller

values of T and larger values of ρ.
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Figure C.1: Bh,LP performs well in empirically-relevant samples when yt is an AR(1) and the means

are known.

(a) ρ = 0.90
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(b) ρ = 0.95
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(c) ρ = 0.99
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Note: This figure is analogous to Figure 2, but the estimation is done under the assumption that the means of the
data are known. The sub-figures show the value of Bh,LP and the Monte Carlo means of θ̂LS estimated on data
simulated from equation (5) under the assumption that αh is known. We use 1,000,000 Monte Carlo simulations. We
set σε = σν = 1 and θ0 = 1.
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Figure C.2: Bh,LP performs well in empirically-relevant samples when yt is an AR(1) and σν is

small.

(a) ρ = 0.90

0 2 4 6 8 10 12 14 16 18 20
h

1.00

0.75

0.50

0.25

0.00

Bh, LP (solid)
Bias calculated in Monte Carlo (dashed)

T = 200
T = 100
T = 50

(b) ρ = 0.95
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(c) ρ = 0.99
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Note: This figure is analogous to Figure 2, but with σε = 10σν = 1. The sug-figures show the value of Bh,LP and the
Monte Carlo means of θ̂LS estimated on data simulated from equation (5). We use 100,000 Monte Carlo simulations.
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Figure C.3: Performance of Bh,BCC in the AR(1) example when σν is small.

(a) ρ = 0.90, Eθ̂h,BCC − θh
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(b) ρ = 0.90, RMSE of θ̂h,BCC relative to θ̂h,LS
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(c) ρ = 0.95, Eθ̂h,BCC − θh
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(d) ρ = 0.95, RMSE of θ̂h,BCC relative to θ̂h,LS
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(e) ρ = 0.99, Eθ̂h,BCC − θh
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(f) ρ = 0.99, RMSE of θ̂h,BCC relative to θ̂h,LS
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Note: This figure is analogous to Figure 3, but here we set σε = 10σν = 1 and θ0 = 1. The sub-figures on the left
show the Monte Carlo means of θ̂h,BCC estimated on data simulated from equation (5). The sub-figures on the right
show the Monte Carlo value of the RMSE of θ̂h,BCC relative to the RMSE of θ̂h,LS . A number larger than unity
indicates that the RMSE of θ̂h,BCC is larger than θ̂h,LS . We use 100,000 Monte Carlo simulations.
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Figure C.4: Bh,LP performs well in empirically-relevant samples when yt is an AR(1) and σε is

small.

(a) ρ = 0.90
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(b) ρ = 0.95
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(c) ρ = 0.99
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Note: This figure is analogous to Figure 2, but with 10σε = σν = 1. The sug-figures show the value of Bh,LP and the
Monte Carlo means of θ̂LS estimated on data simulated from equation (5). We use 100,000 Monte Carlo simulations.
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Figure C.5: Performance of Bh,BCC in the AR(1) example when σε is small.

(a) ρ = 0.90, Eθ̂h,BCC − θh
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(b) ρ = 0.90, RMSE of θ̂h,BCC relative to θ̂h,LS
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(c) ρ = 0.95, Eθ̂h,BCC − θh
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(d) ρ = 0.95, RMSE of θ̂h,BCC relative to θ̂h,LS
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(e) ρ = 0.99, Eθ̂h,BCC − θh
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(f) ρ = 0.99, RMSE of θ̂h,BCC relative to θ̂h,LS
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Note: This figure is analogous to Figure 3, but here we set 10σε = σν = 1 and θ0 = 1. The sub-figures on the left
show the Monte Carlo means of θ̂h,BCC estimated on data simulated from equation (5). The sub-figures on the right
show the Monte Carlo value of the RMSE of θ̂h,BCC relative to the RMSE of θ̂h,LS . A number larger than unity
indicates that the RMSE of θ̂h,BCC is larger than θ̂h,LS . We use 100,000 Monte Carlo simulations.
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Figure C.6: Bh,LP performs well in empirically-relevant samples when yt is an AR(2).

(a) ρ = 0.90
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(b) ρ = 0.95
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(c) ρ = 0.99
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Note: the sub-figures show the value of Bh,LP and the Monte Carlo means of θ̂LS estimated on data simulated from
equation (C.1). We use 100,000 Monte Carlo simulations. We set σε = σν = 1 and θ0 = 1.
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Figure C.7: Performance of Bh,BCC in an AR(2) example.

(a) ρ = 0.90, Eθ̂h,BCC − θh
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(b) ρ = 0.90, RMSE of θ̂h,BCC relative to θ̂h,LS
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(d) ρ = 0.95, RMSE of θ̂h,BCC relative to θ̂h,LS
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(e) ρ = 0.99, Eθ̂h,BCC − θh
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(f) ρ = 0.99, RMSE of θ̂h,BCC relative to θ̂h,LS
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Note: the sub-figures on the left show the Monte Carlo means of θ̂h,BCC estimated on data simulated from equation
(5). The sub-figures on the right show the Monte Carlo value of the RMSE of θ̂h,BCC relative to the RMSE of θ̂h,LS .
A number larger than unity indicates that the RMSE of θ̂h,BCC is larger than θ̂h,LS . We use 100,000 Monte Carlo
simulations. We set σε = σν = 1 and θ0 = 1.
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D Derivations related to standard errors

Here, we provide details of the derivation of the bias in the GMM estimator of the autocovariance

of the regression score under the assumption that θh = 0 for all h. Our notation mirrors that of

Appendix A.

D.1 Derivations related to SEs in LP with no controls

To derive the approximate bias in γ̂h,ℓ, in an LP with controls, we work with the following moment

conditions

E


yt+h − α− x′tβh

εt (yt+h − α− x′tβh)

ct−1 (yt+h − α− x′tβh)

εt (yt+h − α− x′tβh) εt−ℓ

(
yt−ℓ+h − α− x′t−ℓβh

)
− γh,ℓ

 = 0, (D.1)

where ℓ > 0. We maintain Assumptions 1 and 2 and assume that Assumptions A-C in Rilstone

et al. (1996) are satisfied. For notational ease, and without loss of generality, we assume that all

data have zero mean.

With appropriately defined vectors and matrices analogous to those discussed in Appendix A

that also are in the notation of Bao and Ullah (2007), the final element of E
[
Q
(
H1 −H1

)
Qψh,T−h−ℓ

]
is given by (

1

T − h− ℓ

)2 T−h∑
t=1+ℓ

T−h∑
s=1+ℓ

E [Υ1(t, s) + Υ2(t, s) + Υ3(t, s) + Υ4(t, s)] , (D.2)

where

Υ1(t, s) = − [εt−ℓεtuh,t + εtεt−ℓuh,t−ℓ]us,t, (D.3)

Υ2(t, s) = −
[
εtε

2
t−ℓuh,t + ε2t εt−ℓuh,t−ℓ

] εs
σ2ε
uh,s, (D.4)

Υ3(t, s) = −
[
c′t−ℓ−1εt−ℓεtuh,t + εtc

′
t−1εt−ℓuh,t−ℓ

]
Σ−1
c cs−1uh,s, (D.5)

Υ4(t, s) = −εsus,tεs−ℓuh,s−ℓ + γh,u. (D.6)

It can be shown that for all t and s, EΥ1(t, s) = 0, EΥ3(t, s) = 0, EΥ4(t, s) = 0. If t = s or t = s+ℓ,

then

EΥ2(t, s) = −σ2εE
[(
yt+h − αh − x′tβh

)2]
. (D.7)
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If t ̸= s and t ̸= s + ℓ, then EΥ2(t, s) = 0. So, the final element of E
[
Q
(
H1 −H1

)
Qψh,T−h−ℓ

]
is

given by

−2

(
1

T − h− ℓ

)
σ2εE

[(
yt+h − αh − x′tβh

)2]
+O

(
T−3/2

)
. (D.8)

Additionally, the final element of E
[
1
2QH2

[
a−1/2 ⊗ a−1/2

]]
is given by

−
(

1

T − h− ℓ

)2 T−h∑
t=1+ℓ

T−h∑
s=1+ℓ

E
[
εt
(
yt+h − αh − x′tβh

)
εs
(
ys+h − αh − x′sβh

)]
= −

(
1

T − h− ℓ

)
σ2εE

[(
ys+h − αh − x′sβh

)2] (D.9)

Noting that γh,0 = σ2εE
[
(ys+h − αh − x′sβh)

2
]
, the approximate bias of γ̂h,ℓ is

− 1

T − h− ℓ
γh,0. (D.10)

It is useful to parse the effect of estimating αh. If the means of the data are known (αh is

known), the moment conditions are

E


εt (yt+h − α− x′tβh)

ct−1 (yt+h − α− x′tβh)

εt (yt+h − α− x′tβh) εt−ℓ

(
yt−ℓ+h − α− x′t−ℓβh

)
− γh,ℓ

 = 0, (D.11)

where ℓ > 0. It can be shown thet the final element of E
[
Q
(
H1 −H1

)
Qψh,T−h−ℓ

]
is given by(

1

T − h− ℓ

)2 T−h∑
t=1+ℓ

T−h∑
s=1+ℓ

E [Υ2(t, s) + Υ3(t, s) + Υ4(t, s)] , (D.12)

and that the final element of 1
2QH2

[
a−1/2 ⊗ a−1/2

]
is unchanged from the case when controls are

included. Because EΥ1(t, s) = 0 for all t and s, the approximate bias of γ̂h,ℓ is the same as in the

case when αh is estimated.

D.2 Derivations related to SEs in LP with no controls

Here, we consider the approximate bias of γ̂h,ℓ in an LP without controls. We maintain Assump-

tion 1. The moment conditions are the same as in the LP with controls, but with ct−1 = ∅. It can

be shown thet the final element of E
[
Q
(
H1 −H1

)
Qψh,T−h−ℓ

]
is given by(

1

T − h− ℓ

)2 T−h∑
t=1+ℓ

T−h∑
s=1+ℓ

E [Υ1(t, s) + Υ2(t, s) + Υ4(t, s)] , (D.13)
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and the final element of 1
2QH2

[
a−1/2 ⊗ a−1/2

]
is unchanged in form from when controls are in-

cluded. Because θh = 0, it is immediate that the approximate bias of γ̂h,ℓ is

− 1

T − h− ℓ
σ2εE

[
y2t
]
= − 1

T − h− ℓ
γh,0. (D.14)

Following similar arguments to those made in the case of controls, it is easily shown that the

approximate bias of γ̂h,ℓ is unchanged in the case without controls if αh is known.

E CEE VAR

Christiano et al. (2005) estimate a 9 variable VAR(4) using quarterly U.S. data on real GDP, real

consumption, real investment, GDP deflator prices, real wages, labor productivity, federal funds

rate, real profits, and the growth rate of M2. All variables except the federal funds rate and M2

growth rate enter the VAR in log levels.

E.1 Data Construction

Following Christiano et al. (2005), our sample begins in 1965Q3 and ends in 1995Q3. Details on

the variable construction are given below.

1. Real GDP. Take the level of real gross domestic product (FRED mnemonic GDPC1). The

VAR observable is constructed as:

Real GDPt = log (GDPC1t) .

2. Real Consumption. Take the level of real consumption (FRED mnemonic PCECC96). The

VAR observable is constructed as:

Real Consumptiont = log (PCECC96t) .

3. GDP Deflator Prices. Take the level of GDP deflator prices (FRED mnemonic GDPDEF).

The VAR observable is constructed as:

Price Levelt = log (GDPDEFt)) .

4. Real Investent. Take the level of real gross domestic private investment (FRED mnemonic

GPDIC1). The VAR observable is constructed as:

Real Investmentt = log (GPDIC1t) .
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5. Real Wages. Take hourly compensation for all employmed persons (FRED mnemonic

COMPNFB), the level of the GDP deflator prices, and the average weekly hours worked (FRED

mnemonic PRS85006023). The VAR observable is constructed as:

Real Wagest = log

(
COMPNFBt

GDPDEFt × PRS85006023t

)
.

6. Labor Productivity. Take labor productivity (FRED mnemonic OPHNFB). The VAR ob-

servable is constructed as:

Labor Productivityt = log (OPHNFBt) .

7. Federal Funds Rate. Take the quarterly average of the monthly federal funds rate (FRED

mnemonic FEDFUNDS). The VAR observable is constructed as:

Federal Funds Ratet = FEDFUNDSt.

8. Real Profits. Take corporate profits after tax (FRED mnemonic CP). The VAR observable

is constructed as:

Real Profitst = log

(
CPt

GDPDEFt

)
.

9. The growth rate of M2. Take the M2 monetary aggregate (FRED mnemonic M2). The

VAR observable is constructed as:

∆M2t = 100×
(
M2t −M2t−1

M2t−1

)
.

E.2 Identification of the Monetary Policy Shock in the VAR

The structural shocks underpinning the VAR are identified using the Cholesky factorization of the

estimated covariance matrix of the one step ahead forecast errors. The observables enter the VAR in

the following order: real GDP, real consumption, real investment, GDP deflator prices, real wages,

labor productivity, federal funds rate, real profits, and the growth rate of M2. The monetary policy

shock is assumed to be the one associated with the federal funds “equation” (i.e., the 6th one).

The Cholesky identification scheme can thus be interpreted as a set of timing assumptions. The

monetary policy shock cannot contemporanously affect GDP, consumption, investment, the price

level, wages, or labor productivity.
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E.3 Local Projections and VARs, Redux

Here we put finite sample issues in LPs in the context a VAR-type estimator. Unless, the estimated

VAR coincides with the data generating process, there will be an asymptotic bias and variance trade-

off between the LP and VAR. In this section, we gauge the extent of this issue in the context of

finite sample approximation for our data generating process. We compare the impulse response

estimator θ̂BCC as well as the estimators constructed by iterating the h = 0 impact estimate using

either an estimated VAR(1) or estimated VAR(4). We denote these estimates by θ̂V AR(1) and

θ̂V AR(4), respectively. The VAR(4) represents the idealized case where the specification coincides

with the data generating process. The VAR(1) stands in as a misspecified alternative that might

be attractive to an investigator for it’s parsimony.

The left column of figure E.1 displays Monte Carlo estimates of Eθ̂h,BCC − θh (solid lines),

Eθ̂h,V AR(1) − θh (dotted lines), and Eθ̂h,V AR(4) − θh (dash-dotted lines) for for output, the price

level, and the federal funds (rows) for T = 100. The VAR(4), the dash-dotted lines, being correctly

specified, exhibits the least amount of bias in general. Note that while θ̂LS and the VAR(4) estimate

are both unbiased asymptotically in this setting, the finite sample bias associated with the (even

bias-corrected) LP estimator is substantially larger. While this is not a general statement–our

theoretical results confirm that this difference cannot be signed in even a simple AR(1) setting–it

is instructive that in empirically realistic settings this difference is sizable, as the LP bias and VAR

bias are generated by the statisical considerations. Thus, the common practice of ignoring issues

of finite sample bias in VARs maybe not be appropriate for LPs. The VAR(1), being misspecified,

exhibits bias coming from both finite sample and asymptotic considerations. For real GDP and the

price level, the bias associated with the VAR(1) is substantial, sometimes much worse than even

the non-corrected LP (not shown), as their responses display more complex dynamics.

The right column of Figure E.1 displays the MSE ratios of θ̂BCC and θ̂V AR(1) relative to the

θ̂V AR(4) for T = 100. The VAR(1) exhibits lower MSE than θ̂BCC for essentially all variables and

horizons—indeed it is typically preferred to the (correctly specified) VAR(4) estimator owing to

finite sample considerations. One way to interpret this result in the context of increasing popularity

of LPs is that investigators care much more about bias than variance of estimators–otherwise we

would see much use of misspecified VARs.

E.4 Additional Results
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Figure E.1: Bias and MSE of θ̂BCC compared to VAR-based estimates under a CEE-type VAR

Data Generating Process
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and Eθ̂h,V AR(4) − θh (dash-dotted)
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(f) MSE of θ̂h,BCC relative to θ̂h,V AR(4) (solid)

and θ̂h,V AR(1) relative to θ̂h,V AR(4) (dotted)
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The left column of figure shows the bias of Eθ̂h,BCC (solid lines), Eθ̂h,V AR(1) (dotted lines) and Eθ̂h,V AR(4) (dash-
dotted lines) for T = 100. The right column shows the ratio of the mean squared error of θ̂h,BCC relative to θ̂h,V AR(4)

(solid lines) and for θ̂h,V AR(1) relative to θ̂h,V AR(4) (dotted lines) for T = 100.
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Figure E.2: Bias and MSE under a CEE-type VAR DGP (No controls)

Output
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The sub-figures in the left column show the Eθ̂h,LS − θh (dashed lines) and Eθ̂h,BCC − θh (solid lines) for T = 100

(red) and T = 200 (green). The sub-figures in the right column show the ratio of the MSE of θ̂h,BCC relative to θ̂h,LS

for T = 100 (red) and T = 200 (green).
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Figure E.3: Bias and MSE under a CEE-type VAR DGP (Partial Controls)
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The sub-figures in the left column show the Eθ̂h,LS − θh (dashed lines) and Eθ̂h,BCC − θh (solid lines) for T = 100

(red) and T = 200 (green). The sub-figures in the right column show the ratio of the MSE of θ̂h,BCC relative to θ̂h,LS

for T = 100 (red) and T = 200 (green).
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