

Correcting the Analytical Determinacy Boundary in Gust et al. (2022)

Christopher Gust, Edward Herbst, and David López-Salido*

June 6, 2025

Abstract. This note corrects a sign and ordering error in the matrix inversion appearing in Section II.A of “Short-term Planning, Macroeconomic Persistence, and Monetary Policy” (*American Economic Journal: Macroeconomics* Vol. 14, No. 4, October 2022, pp. 174–209). The misprint affects the analytical expression for the determinacy boundary (equation 20), but *not* the numerical results reported in the paper: all equilibrium classifications in the main text were obtained with GENSYS, so the posterior estimates and impulse responses remain unchanged. We derive the correct condition, $(1 - \rho + \sigma \varphi_y)(1 - \beta \rho) + \kappa \sigma (\varphi_\pi - \rho) > 0$. We thank Emi Nakamura, Venance Riblier, and Jón Steinsson for bringing the error and correction to our attention.

Begin with

$$\tilde{x}_t = \rho M \mathbb{E}_t[\tilde{x}_{t+1}] + N u_t, \quad \tilde{x}_t = \begin{bmatrix} \tilde{y}_t \\ \tilde{\pi}_t \end{bmatrix}.$$

where

$$M = \frac{1}{\delta} \begin{bmatrix} 1 & \sigma(1 - \beta \varphi_\pi) \\ \kappa & \kappa \sigma + \beta(1 + \sigma \varphi_y) \end{bmatrix}, \quad \delta = 1 + \sigma(\varphi_y + \kappa \sigma \varphi_\pi).$$

The original version incorrectly derives the inverse $A = \rho^{-1} M^{-1}$. The correct version is:

$$A = \rho^{-1} M^{-1} = \frac{1}{\beta \rho} \begin{bmatrix} \beta(1 + \sigma \varphi_y) + \kappa \sigma & \sigma(\beta \varphi_\pi - 1) \\ -\kappa & 1 \end{bmatrix}.$$

We have:

$$\det A = \frac{1 + \sigma \varphi_y + \kappa \sigma \varphi_\pi}{\beta \rho^2}, \quad \text{tr} A = \frac{\beta(1 + \sigma \varphi_y) + \kappa \sigma + 1}{\beta \rho}.$$

The conditions for determinancy are:

$$(J1) \quad \det A > 1 \iff \kappa \sigma \varphi_\pi + \sigma \varphi_y + 1 > \beta \rho^2,$$

$$(J2) \quad \det A - \text{tr} A + 1 > 0 \iff (1 - \rho + \sigma \varphi_y)(1 - \beta \rho) + \kappa \sigma (\varphi_\pi - \rho) > 0,$$

$$(J3) \quad \det A + \text{tr} A + 1 > 0 \quad (\text{always satisfied for } \beta, \rho \in (0, 1), \sigma, \kappa > 0).$$

*Federal Reserve Board. Emails: christopher.gust@frb.gov, edward.p.herbst@frb.gov, david.lopez-salido@frb.gov. The views expressed in this paper are solely those of the authors and should not be interpreted as reflecting the views of the Board of Governors of the Federal Reserve System or of any other person associated with the Federal Reserve System.

Given the restrictions on the parameter space, only J2 is relevant for assessing determinancy.

To get a sense of the difference, we plot determinancy regions using the correct inequality and the one from the paper. Both panels set: $\beta = 0.99$, $\sigma = 1$, $\kappa = 0.015$, and $\varphi_y = 0.05$, with the determinancy maps drawn over the grid $\varphi_\pi \in [0, 2.5]$ (vertical axis) and $\rho \in [0.5, 0.99]$ (horizontal axis).

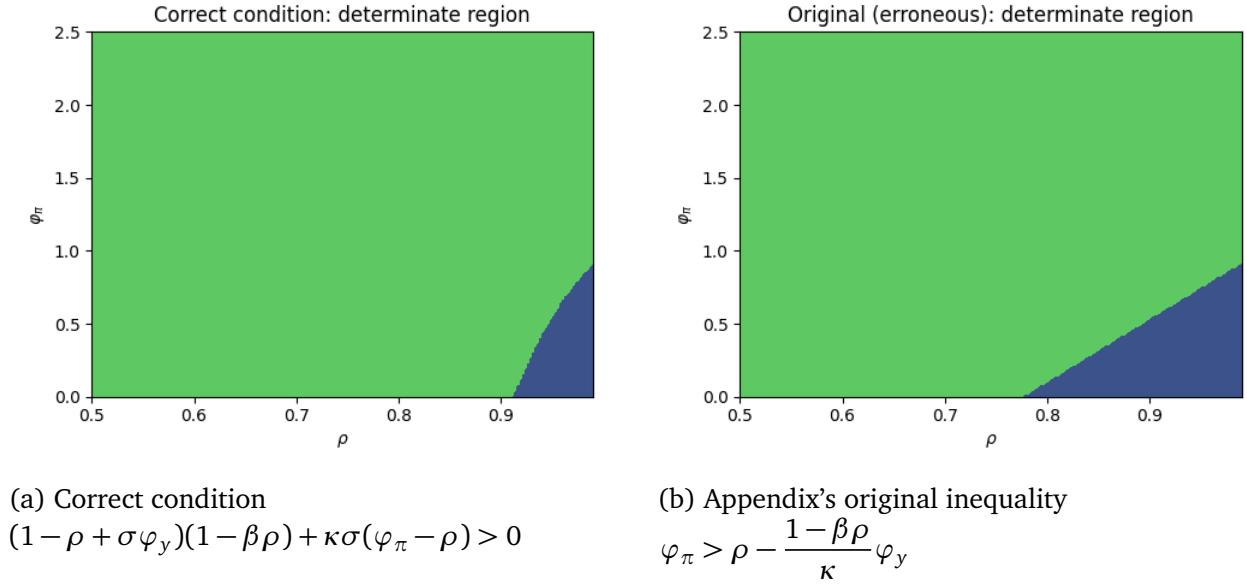


Figure 1: Determinacy (shaded) versus indeterminacy across ρ and φ_π .