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Abstract

In this chapter we revisit the forecasting performance of dynamic stochastic general
equilibrium (DSGE) models. We find, consistent with prior literature, that the fore-
casts from a benchmark DSGE model are competitive with other forecasts. We place
particular emphasis on evaluating the predictive power of a so-called behavioral New
Keynesian model. For this model, we discern substantial time variation in forecast-
ing ability, which may point towards explicit incorporation of time-varying behavioral
components into these kinds of models. We also examine density forecasts from these
models. Finally, we discuss the role and challenges of the zero lower bound and the
COVID-19 crisis.

1 Introduction
Dynamic stochastic general equilibrium (DSGE) models are a general and versatile class
of multivariate macroeconomic models. An overarching theme of this class of models is
that they are derived using economic theory: i.e., from the intertemporal behavior of (for
example) households and firms, and the interactions between these agents. This theory then
has implications for the business cycle behavior of key macroeconomic aggregates. This
yields a powerful multivariate time series framework that can be used for many purposes
including: inferring economically interpretable sources of fluctuations, studying the effects
of policy analysis, and forecasting. Many central banks including the Sveriges Riskbank,
European Central Bank, the Federal Reserve Bank of NY, and the Federal Reserve Board
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use DSGE models as part of their policy analysis. This chapter will discuss the use of DSGE
models for forecasting.

The application of DSGE models for forecasting has been a source of interest and debate
for over 20 years. The Smets and Wouters (2007) model obtained comparable statistical fit
to a flexibile vector autoregression, and a large literature subsequently emerged constructing
and assessing DSGE model forecasts. Two notable contributions to this literature are Edge
and Gürkaynak (2010) and Del Negro and Schorfheide (2013), who both evaluate (pseudo)
real-time forecasts generated from variants of the Smets and Wouters (2007) model. The
conclusion of these papers is that DSGE models are competitive in forecasting performance
with both judgmental forecasts and predictions from other statistical models. Of course,
whether one views this conclusion as ’glass half-full’ or ’half-empty’ will depend on their
stance on the overall performance of macroeconomic forecasting in general. Nevertheless,
the competitive nature of DSGE models reinforces their application in other areas of policy
analysis.1

Since the research of Edge and Gürkaynak (2010) and Del Negro and Schorfheide (2013),
much of the literature has focused on particular observables, episodes, or nuances of forecast-
ing with DSGE models. For instance, Del Negro et al. (2016) emphasizes the time-varying
performance of models with and without financial frictions. Cai et al. (2019) find that a
DSGE model augmented with financial frictions exhibited comparable forecasting accuracy
to professional forecasters in the wake of the Great Recesssion. Rubaszek (2021) uses a small
scale DSGE model to predict movements in oil prices, and finds that it compares favorably.
Carriero et al. (2019) employ a meta-analysis to compare forecasting models (DSGE, VAR,
factor model, et cetera) and find that DSGE model competitively forecasts long-run inflation
in US and UK.

In this chapter, we provide an overview of DSGE model forecasting and revisit the
predictive power of DSGE models. Our study will focus on the performance of a so-called
“behavioral New Keynesian” DSGE model. Behavioral New Keynesian models have emerged
as a popular alternative to standard rational expectations models. These models generally
feature some form of cognitive limitations of households and firms and generate forecasts
and forecast errors that are more consistent with survey evidence (e.g., Coibion and Gorod-
nichenko (2015).) Many behavioral paradigms have been proposed in recent years—Gabaix
(2016), Angeletos and Lian (2018), or Woodford (2018) —but their performance as statisti-
cal models has been less studied. Some exceptions to this are Gelain et al. (2019), who show
that DSGE model with “hybrid expectations” improves forecasting for inflation, and Warne

1That said, Iversen et al. (2016) argue that even suboptimal DSGE model forecasts can be useful because
of their interpretability and narrative power.
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(2023), who finds more mixed evidence of adaptive vs. rational expectations in forecasting
performance.

We focus on the finite horizon planning (FHP) model of Woodford (2018), wherein agents
can reason perfectly only k periods into the future, and use a coarse estimate of how their
choices will affect outcomes beyond that point. Gust et al. (2022) argue that this model
tracks the time series of output growth, inflation, and interest rates prior to the Great
Recession well. Their estimates point to a large departure from full information, rational
expectations.

We go beyond Gust et al. (2022) and examine (pseudo) real time forecasts from this
model. As is common when evaluating DSGE model forecasts, we also include the Smets
and Wouters (2007) model, a larger (but with rational expectations) DSGE model. We
compare the forecasts from these models to a well known benchmark: judgmental forecasts
from the staff of the Federal Reserve Board prepared in advance of regularly scheduled policy
meetings from 1994-2017.

We find, consistent with prior literature, that the forecasts from the Smets-Wouters model
are competitive with the judgmental forecasts for GDP growth beyond short term forecasts.
The inflation forecasts are somewhat worse than the judgmental ones, particularly at longer
horizons. This discrepancy can be narrowed by, for instance, augmenting the Smets-Wouters
model with an enlarged observable set, information about expectations, financial frictions,
or other features, as prior papers have done. The FHP model does not perform as well as
the Smets-Wouters model in forecasting output growth and inflation over the entire sample
period. On the one hand, this result may not be surprising: the FHP model is a “small-scale”
model which attributes all of the fluctuations in output growth, inflation, and the federal
funds rate to just three structural shocks. On the other hand, this poor performance would
seem to be at odds with the emerging interest in behavioral models for explaining key facts
about expectations and the time series behavior of macroeconomic aggregates.

A deeper analysis indicates considerable time variation in the predictive power of the FHP
model. In particular, the FHP model performs quite well—better than even the judgmental
forecasts—in the 1990s and early part of the 2000s. The forecast performance deteriorates
during the Great Recession, as is typical of models without financial frictions. However,
particularly for inflation the FHP model’s performance does not recover in the post-Great
Recession period. This is in contrast to the Smets-Wouters model, whose performance
improves in the post-Great Recession period. In particular, the FHP model consistently un-
derpredicts the low and stable inflation that characterized the post-Great Recession period.
When explaining the entire history of inflation (in addition to GDP growth and the federal
funds), the model estimates short planning horizons for households and firms. Under these
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estimates, inflation is largely backward-looking, with the model translating the Great Reces-
sion and its low growth aftermath into extremely low inflation. By contrast, in models like
Smets-Wouters the determination of current inflation weights expected future inflation more
heavily, and thus they are able to better explain the low and stable inflation in the post-
Great Recession period. This suggests that a time-varying degree of forward-lookingness
may be an important feature of behavioral models.

We also examine density forecasts from the FHP model. The FHP model generates
density forecasts that are not commensurate with the time series of output growth, inflation,
and the federal funds rate. This is consistent with the FHP model’s tendency to underpredict
inflation. Some of this deficiency is due to the assumption of a constant variance of shocks.
We find that allowing for time-varying volatility changes the density forecasts somewhat,
but does not resolve the underprediction of inflation.

The results correspond to the mechanical evaluation of the predictions from 1994 to 2017
of FHP and Smets-Wouters model. The models ignores the zero lower bound (ZLB) con-
straint on nominal interest rates, while the sample period omits the COVID-19 recession,
an extremely high-volatility period which has challenged statistical models (as well as judg-
mental forecasters). We discuss these two nonlinearities, the ZLB and COVID-19, from a
forecasting perspective.

The chapter is organized as follows. Section 2 gives background on the mechanics of
DSGE model forecasts. Section 3 describes the FHP model and the estimation data set.
Section 4 evaluates point forecasts, while Section 5 examines density forecasts. Section
6 discuss some considerations related to the zero lower bound and COVID-19. Section 7
concludes.

2 The Statistical Representation of a DSGE Model
Our starting point will be a forecaster at time T with a set of observations Y1:T = {yt}Tt=1.
Their goal is to forecast Yt+1:t+h using a DSGE model. A generic DSGE model can be written
in the following state space form:

yt = Ψ(st, t; θ) + ut, ut ∼ N
(
0,Σu(θ)

)
, (1)

st = Φ(st−1, ϵt; θ), ϵt ∼ Fϵ(·; θ). (2)

Equation (1) represents the observation equation which links a vector of (potentially unob-
served) states st to a vector of observed variables yt through the mapping Ψ. The model
may also contain deterministic time trends since t is also an argument of Ψ. The formulation
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in equation (1) also allows for normally distributed measurement errors represented by the
vector ut . The evolution of the state variables st is governed by the state equation (2). The
state equation is a function of the lagged state st−1 and a vector of shocks ϵt. The shocks are
assumed to be drawn from a known distribution Fϵ. All of these relationships are determined
by a vector of parameters θ. For DSGE, these parameters are conventionally described as
“structural” or “deep” to distinguish them from the parameters of reduced form statistical
models. The elements of the vector θ often have economic interpretability, e.g., the respon-
siveness of the monetary authority to inflation fluctuations, the representative household’s
coefficient of relative risk aversion, and so on. The formulation in equations (1) and (2) is
quite general and allows for nonlinearities in the mappings Ψ and Φ and departures from
normality in εt.2 Given this model and the data Y1:T , the first step for the forecaster is to
recover plausible values for the parameter vector θ.
Parameter Estimation. It is popular to cast DSGE models as Bayesian models, where the
parameters θ are treated as random variables with a prior distribution p(θ). Equations (1)
and (2) can be used to construct a likelihood function, p(Y1:T |θ), which is the probability of
observing the data Y1:T given the parameters θ. The posterior distribution of the parameters
is then given by Bayes’ rule:

p(θ|Y1:T ) =
p(Y1:T |θ)p(θ)
p(Y1:T )

. (3)

Analytical characterizations of the posterior p(θ|y1:T ) are generally not available for two
reasons. First, the likelihood function p(Y1:T |θ) may not be known in closed form if the
state space system is nonlinear or non-Gaussian. In this case, one may have to estimate the
likelihood function using sequential Monte Carlo (SMC) methods such as particle filtering.
Herbst and Schorfheide (2015) provide background information for this approach and Herbst
and Schorfheide (2019) provide recent advances. Second, even if the system is linear and
Gaussian—so that the Kalman filter may be used to compute the likelihood—the mapping
from the parameters to the likelihood will be nonlinear and the posterior will not be available
in closed form.

Instead, the posterior is approximated using simulation techniques. Two popular classes
of approaches are Markov chain Monte Carlo (MCMC) and SMC. MCMC methods construct
a Markov chain whose unique invariant distribution corresponds to the posterior in (3). By
simulating from this chain, the forecaster obtains a set of (correlated) draws {θi}Ni=1. These
draws can be used to approximate posterior expectations via Monte Carlo averages. For
recent advances in MCMC for DSGE models (which can potentially sidestep the issue of
likelihood estimation for nonlinear models) see Farkas and Tatar (2020) and Childers et al.

2Recent advances in heterogenous agent DSGE yield an infinite dimensional state vector.
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(2022). Kase et al. (2022) propose a machine learning approach to model solution and
parameter estimation. SMC methods are similar in spirit to MCMC methods, but instead
of constructing a Markov chain, they construct a set of weighted draws {(θi, wi)}Ni=1 which
approximate the posterior. SMC methods can be an attractive alternative to the MCMC
methods because they are more amenable to parallelization and can approximate irregular
posterior distributions, which often arise in DSGE models. Herbst and Schorfheide (2015)
provide background on SMC methods for DSGE models. Cai et al. (2020) adapt SMC
methods to real-time “online” environments where the posterior is incrementally updated as
new information arrives. This setting is particularly relevant for forecasting problems.
Forecasting. In the Bayesian paradigm, forecasts are constructed using the predictive distri-
bution of future data, p(YT+1:T+h|Y1:T ). This predictive distribution is obtained by integrat-
ing out the parameters from the joint distribution of future data and parameters:

p(YT+1:T+h|Y1:T ) =
∫
p(YT+1:T+h|θ, Y1:T )p(θ|Y1:T )dθ. (4)

Like the posterior itself, the integral associated with the predictive distribution in equa-
tion (4) is typically intractable. Instead, the predictive distribution is approximated using
simulation methods. One can use the draws {θi}Ni=1 from the posterior to construct a set
{Y i

t+1:t+h}Ni=1 via the following procedure:

1. For each draw θi, simulate siT ∼ sT |θ, Y1:T .

2. For h = 1, . . . , H, simulate siT+h ∼ sT+h|siT+h−1, θ
i using (2) and then yiT+h ∼ yT+h|θi, siT+h

using (1).

This procedure makes explicit the role of the states which are already integrated out of
equation (4). With the draws {Y i

t+1:t+h}Ni=1 of the predictive distribution in hand, point and
interval forecasts can be constructed. The selection of the objects minimizes an expected
loss function. The loss function is determined by the forecaster. For point forecasting,
common measures such as mean, median, and mode, correspond to minimizing quadratic
loss, absolute loss and 0-1 loss respectively. For interval forecasting, the coverage probability
of the predicted interval is often used as a measure.

3 A Small-Scale (Behavioral) New Keynesian Model
In this section, we introduce a small-scale New Keynesian (NK) DSGE model. The model
shares many features with the canonical three equation NK model—textbook treatments can
be found in Woodford (2003) and Galí (2008). Households face an intertemporal tradeoff
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between consumption and savings and monopolistically competitive firms set prices in a stag-
gered fashion under Calvo pricing. Unlike the canonical NK model, the behavioural model
presented here does not assume that households and firms set complete state-contingent
plans over an infinite horizon. Instead, following Woodford (2018), households and firms
exhibit a form of bounded rationality: each plans optimally only k periods into the future,
taking the “continuation value” of their choices beyond k periods as given. Agents update
their beliefs about this continuation value only slowly, using a form of adaptive learning. We
refer to this model as the finite horizon planning or FHP model. A complete derivation of
the model is beyond the scope of this review. Here, we limit ourselves to a brief description
of the model’s equilibrium conditions.

The economy is populated by a large number of households and firms. These house-
holds and firms may differ in their planning horizon; that is, the periods k = 0, 1, . . . that
they consider in their decision-making. We assume the proportion of types of agents (both
household and firms) associated with each k follows a geometric distribution with parameter
ρ ∈ [0, 1]. When ρ is close to one, the mass of agents with long planning horizons is large
relative to the mass of agents with short planning horizons. When ρ is close to zero, the
mass of agents with short planning horizons is large relative to the mass of agents with long
planning horizons. The aggregate Euler equation for output, yt, is given by:

yt − yt = ρEt [yt+1 − ξt+1 − ȳt+1]− σ (it − īt − ρEt [πt+1 − π̄t+1]) + ξt. (5)

The nominal interest rate and inflation rate are represented by it and πt, respectively. The
variable ξt is an exogenous demand shock. In addition to the planning horizon parameter
ρ, equation (5) also contains σ, the intertemporal elasticity of substitution. The equation
also includes “trend” variables ȳt, π̄t ,and īt, whose values are determined as part of the
adaptive learning process. When ȳt = π̄t = īt = 0 and ρ = 1, this equation collapses to
the standard IS curve from the canonical NK model. When ρ < 1, equation (5) exhibits
cognitive discounting.

Inflation dynamics are governed by the following Phillips curve:

πt − πt = βρEt [πt+1 − πt+1] + κ(yt − y∗t − yt). (6)

The slope of the Phillips curve is given by the parameter κ, while β is the discount factor.
The variable y∗t is an exogenous supply shock. As with the IS curve, inflation dynamics
follow the standard NK Phillips curve when ρ = 1 and ȳt = π̄t = 0.

The central bank is modeled with less behavioral realism as households and firms. Mon-
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etary policy is set according to a simple interest rate rule:

it − it = ϕπ(πt − πt) + ϕy(yt − yt) + i∗t . (7)

The parameters ϕπ and ϕy are the coefficients governing the responsiveness of the nominal
interest rate to inflation and output, respectively. The variable i∗t is an exogenous monetary
policy shock. As with the IS and Phillips curve, the monetary policy rule is a standard
Taylor-type monetary policy rule when ȳt = π̄t = īt = 0. The trend īt is related to the
trends in ȳt and π̄t by:

īt = ϕ̄ππ̄t + ϕ̄yȳt. (8)

Finally, we discuss the determination of the two trend variables ȳt and π̄t. These vari-
ables are determined by the adaptive learning process. Households have an estimate of the
continuation value, vt which is updated according to the following rule:

vt = (1− γ)vt−1 + γvestt−1. (9)

The variable vestt is an estimated value of the continuation value at time t, and γ ∈ [0, 1) is
the learning gain. The learning gain governs the speed at which agents update their beliefs
about the value of vt. When γ = 0, agents do not update their beliefs at all. When γ = 1,
agents use the most recent observation of vt to update their beliefs. Woodford (2018) shows
that in equilibrium, the estimated value of the continuation value is given by:

vestt = yt − ξt + σπt. (10)

Averaging across different household types, Woodford (2018) shows that the effect of vt on
the spending of the average household is given by:

ȳt =
−σ
1− ρ

(̄ıt − ρπ̄t) + vt, (11)

A similar logic holds for firms. A firm’s beliefs regarding its value functions evolve according
to:

vft = (1− γf )vft−1 + γfv
est
ft−1, (12)

where γf is the constant-gain learning parameter, vft denotes the effect of the continuation
value on a firm’s pricing decision at date t, and vestft is a new estimate of that effect—which
firms determine at the same time as they make their optimal pricing decision. This estimate
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satisfies:
vestft = (1− α)−1πt, (13)

The parameter α is the degree of price stickiness in the economy. Aggregating across firms,
vft can be related to trend inflation, π̄t. Woodford (2018) shows the relationship between
these two variables satisfies:

π̄t =
κ

1− βρ
ȳt +

(1− ρ)(1− α)β

1− βρ
vft. (14)

Thus, these trend variables are time-varying, and reflect changes in these variables that arise
from households and firms updating their beliefs about their value functions. Since these
value functions govern the valuation of events beyond their planning horizons, including those
that take place in the far future, movements in these variables can be thought of as capturing
changes in the beliefs of household and firm about longer-run economic developments.

The exogenous shocks ξt, y∗t , and i∗t follow independent AR(1) processes:

ξt = ρξξt−1 + εξt , εξt ∼ N
(
0, σ2

ξ

)
, (15)

y∗t = ρyy
∗
t−1 + εyt , εyt ∼ N

(
0, σ2

y

)
, (16)

i∗t = ρii
∗
t−1 + εit, εit ∼ N (0, σ2

i ) . (17)

The specification of the exogenous processes completes the model. The model is “small” in
that it only has three shocks, but the resulting dynamics of the states can be quite rich given
the presence of the learning process, without additional frictions such as habit formation
or price indexation. Gust et al. (2022) evaluate in-sample fit of the model and find that it
outperforms a number of competing models, including the standard NK model with rational
expectations, models using detrended data, and other behavioral models, over the period
1964–2007.
Solving the model. The equations (5) – (17) constitute the model’s equilibrium conditions.
The states are given by:

st =
[
yt, πt, it, ȳt, π̄t, īt, vt, v

est
t , vft, v

est
ft , ξt, y

∗
t , i

∗
t ,
]′
. (18)

Given values for the parameters, this system can be solved used standard techniques for
solving linear rational expectations models, e.g., Sims (2002). The solution to this system
of equations is given by a VAR(1):

st = Φs(θ)st−1 + Φϵ(θ)ϵt. (19)
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The matrices Φs(θ) and Φϵ(θ) are functions of the parameters of the model, θ.
Linking to observables. The observation equations for the model are:

Per Capita Real Output Growtht = µQ + yt − yt−1, (20)
GDP Deflator Inflationt = πA + 4 · πt, (21)

Federal Funds Ratet = πA + rA + 4 · it, (22)

where πA and rA are parameters governing the model’s steady state inflation rate and real
rate, respectively. Also, µQ is the growth rate of output, as we view our model as one that
has been detrended from an economy growing at a constant rate, µQ.

Our parameter vector θ is given by:

θ =
[
β, σ, α, γ, ρ, ϕπ, ϕy, ρξ, ρy, ρi, σξ, σy, σi, µ

Q, πA, rA
]′
.

To complete our Bayesian model, we need to specify priors for the parameters in θ. Prior
elicitation is an important part of Bayesian analysis, and can effect forecasting performance.
We use relatively diffuse priors, which are described in the appendix.
A reference model. In addition to the small-scale model studied here, we present results also
present results for the Smets and Wouters (2007) model, a well known benchmark in the
literature. This is a medium-scale DSGE model with seven observables and was the focus of
Edge and Gürkaynak (2010) and Del Negro and Schorfheide (2013). Due to space constraints
and the model’s extensive coverage in the literature, we have included the presentation of
the model’s equilibrium conditions, observation equations, and prior distribution to the
appendix.

3.1 A Real Time Data Set

Macroeconomic data is often revised, either due to measurement error or because of changes
to definitions. When evaluating a model’s forecast accuracy, it is important to use the data
that was available at the time the forecast was made. Since we use the Federal Reserve
Board staff judgmental forecasts as references, we construct a real time data set whose data
for any given vintage corresponds to the data available the Federal Reserve Board staff at
the time. The staff at the Federal Reserve Board of Governors prepare point forecasts for
key macroeconomic variables in advance of every scheduled meeting of the Federal Open
Market Committee. These meetings take place approximately every six weeks, resulting in
eight meetings per year. The forecasts are summarized in a document referred to as the
Greenbook (to 2007) or the Tealbook (from 2007 onwards). These forecasts, which we refer
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to for simplicity as Tealbook forecasts, are only available to the public with a lag of five
years. Therefore, the forecasts from December 2017 are the most recent. We consider only
the first Tealbook forecast in each quarter beginning in 1994, which yields 96 forecast origins.

To construct a real time data set with these 96 vintages, we use the ALFRED historical
database maintained by the Federal Reserve Bank of St. Louis. This effectively extends
the work of Edge and Gürkaynak (2010) and Del Negro and Schorfheide (2013) beyond
the Great Recession. Real time data sets can also be found from the pioneering work of
Croushore and Stark (2001) and more recently McCracken and Ng (2021). The appendix
contains more detailed information about the construction of the real time data set. Note
that in constructing our data set, for any given vintage of data we use the most current
estimate of a given time series. That is, we do not model data revisions. Galvão (2017)
finds benefits to estimating DSGE models using a “released-based approach” that accounts
for data revisions.

Our DSGE model is estimated on per capita output growth. We follow Del Negro and
Schorfheide (2013) and use the most recent estimate of population growth to transform these
forecasts into forecasts of total output growth.

4 Point Forecasts
In this section we examine the point forecasts associated with the small-scale model and
compare it to Federal Reserve Board staff forecasts. For each of these 96 vintages of data, we
estimate the model described in Section 3 using the SMC algorithm in Herbst and Schorfheide
(2014). For each vintage, we use the estimated model to generate the predictive distribution
for output growth, inflation, and the federal funds rate with H = 8 being the maximum
forecast horizon. We use the mean of the predictive distribution as the point forecast. To
evaluate the accuracy of these point forecasts, we first compute the root mean squared
forecast error (RMSE) for each forecast horizon and each variable. For a generic variable yt
RMSE at horizon h is given by:

RMSEh =

√√√√ 1

T − T0

T∑
t=T0

(
ŷt+h|t − yt+h

)2
, (23)

Here, yt+h is the “actual” value of the variable at time t+ h, ŷt+h|t is the model’s forecast of
yt+h at time t, T0 denotes the start of the forecast evaluation period, and T the end of the
sample. Economic data is continually revised and there is disagreement in the forecasting
literature about the appropriate way to compute the actual value of the variable: while the
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latest available data may be closer to the “true” value, earlier releases while be more concep-
tually similar to the forecast itself—see the discussion in Croushore (2011). For simplicity,
we use the most recent vintage of the data available at time t as the actuals, but results are
not substantially affected by using the “first final” release.

Figure 1 about here.

Figure 1 plots the RMSEs of the DSGE model and the Tealbook for quarter-over-quarter
output growth, quarter-over-quarter inflation, and the quarterly federal funds rate against
the RMSE of the Tealbook forecasts for h = 1, . . . , 8. The FRB staff projections of the
federal funds rate are better understood as a conditioning assumption and so we omit this
forecast from the figure. For real output growth, the FRB staff (green line) exhibits a clear
advantage in nowcasting, with the h = 1 RMSE of about 0.40 percentage points substantially
lower than either the SW model (orange line) or the FHP model (blue line). By h = 4, the
advantage has largely disappeared. The near term advantage of a judgmental forecast like the
Tealbook is not new or surprising: the forecasts considered here are typically constructed in
March, June, September, and December. For example, for our 2012Q2 vintage, the Tealbook
was published on June 12 thus the FRB staff forecast for 2012Q2 GDP growth incorporates
all of the information released up to that date (though of course it would be difficult for
the staff to “react” to new information in days leading up to publication.) Still, this is a
considerable information advantage for our DSGE models, which by construction use only
estimates of 2012Q1 (and prior) GDP, inflation, and the federal funds rate to generate its
forecast. Aligning information sets can substantially narrow the near term difference in
forecast accuracy, a point emphasized by Del Negro and Schorfheide (2013) and examined
later in this chapter.

The forecasts for inflation (middle panel) indicate that the Tealbook forecasts are slightly
better, in a RMSE-sense, than the DSGE model forecasts over the entire sample period. This
moderate difference is increasing in the forecast horizon. The small-scale FHP model is in
turn slightly worse than the SW model. For the federal funds rate (the right panel), the
FHP model and the SW model give essentially the same forecasts. The RMSE is increasing
quickly as the horizon increases.

This basic analysis echos the conclusions of earlier work: outside of near term real GDP
forecasting, DSGE models remain competitive in terms of RMSEs with the Tealbook fore-
casts. This is despite the fact that the DSGE models considered here are the FHP model, a
model driven by only three structural shocks, and the (nearly twenty years old) SW model.
Neither model sees observable information on financial markets, expectations (either short or
long term), the interest rate lower bound, and many other relevant indicators for prediction.
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Figure 2 about here.

The dynamics of predictive accuracy. The results in figure 1 obscure some important details
about the predictive accuracy of the models. Figure 2 shows RMSEs for the sample models,
only over the 1994–2007 period, roughly the first half of the sample. Over this part of the
sample, the model rankings are reversed: the point forecasts from the FHP model exhibited
lower RMSEs for output growth and inflation than either the SW model or the Tealbook
forecast, though the FHP model forecast for interest rates is still inferior to the SW model
one. Interestingly, outside of near term GDP growth and longer horizon inflation forecasts,
the FHP model also exhibits lower RMSE than the Tealbook forecasts, a difficult benchmark
for any econometric model let alone as one as parsimononious as the FHP model.

Figure 3 about here.

To better understand the shifts in predictive performance ?? plots the rolling RMSE esti-
mates based on 5 year windows for h = 1 (top panel) and h = 4 (bottom panel). In the top
panel, the near-term superiority of the Tealbook is evident, the Tealbook forecast (the green
line) always below the FHP (blue line) and SW (orange line) models. The Great Recession
is also evident: the RMSEs for all three forecasts increase substantially after 2009, with
the model-based forecast exhibiting much larger increases. Subsequent to that, forecasting
performance returns roughly to its pre-financial crisis performance. For near term inflation
forecasting (the top right panel), all three forecasts exhibit similar RMSEs prior to the fi-
nancial crisis, with the FHP model exhibiting a slight advantage. The Great Recession was
associated with a deterioration in forecasting performance of all forecasts—sometimes known
as the “missing disinflation”—however both the SW model and Tealbook RMSE fall in the
years following, while the RMSEs for the FHP model remain elevated. The longer horizon
forecasts tell a similar story. The FHP inflation forecasts again exhibit large RMSEs in the
2010s despite performing well in the prior decades. The reason for this miss is that the
FHP model expected inflation to be extremely low—even negative—for most of the 2010s.
The slow growth in the wake of the extremely large negative shocks dominates the model
forecast, in which it sees the “trend” component of inflation π̄t as very low over this period.
In the next subsection, we examine a simple enlargement of the FHP model observables that
allows for a more accurate forecast of inflation.

4.1 The Role of Additional Information

DSGE models typically use only a small set of information available to the econometrician.
While this parsimony helps facilitate the estimation and interpretation of the model, it may
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also be associated with poor forecasts. As seen earlier in section 4, the Federal Reserve Board
staff has a considerable advantage in “nowcasting” real GDP growth over the DSGE model.
The staff judgmental forecast is based on a much larger set of information than the DSGE
model. Because of the larger information set, the publication delay of, say, real GDP growth
data has a much smaller effect on the staff’s forecast than it does on the DSGE model’s
forecast. Indeed, in the exercises in this paper, we ignore the fact that when constructing
any given vintage, at least one third of the federal funds rate of the current quarter federal
funds rate data has already been realized—because the second Tealbook of the quarter is
published around the end of the second month of the quarter—or that soft indicators of
current spending are available.

The presence of this information disadvantage has long been known to DSGE modelers.
Boivin and Giannoni (2008) estimate a DSGE model with a much larger information set via
factor modeling. Del Negro and Schorfheide (2013) argue that this information disadvantage
has large effects on DSGE model forecasts, while Smets et al. (2014) show that for the
Eurozone, conditioning on external information affects the point forecast accuracy. More
recently, Giannone et al. (2016) explicitly model external information with a particular
emphasis on higher frequency information. Some examples of approaches in the spirit—and
refinements thereof—can be found in Cervená and Schneider (2014), Boneva et al. (2019),
and Meyer-Gohde and Shabalina (2022). Drautzburg (2023) finds that conditioning on SPF
forecasts improves DSGE model forecast accuracy.

In this chapter, we focus on incorporating a noisy measure of inflation expectations and
assess how it affects point forecasts of the FHP model. First, we use a representative agent
variant of the FHP model. In this version of the model, there is only a single k planning
horizon, rather than a distribution over k = 0, 1, . . .. Following the empirical evidence in
Gust et al. (2022), we set k = 1. This delivers very similar forecasts as the heterogeneous
agent model in Section 3. We augment our observables with expected inflation over the next
four quarters:

Expected Inflationt = πA + Ek
t [πt+1 + πt+2 + πt+3 + πt+4]/4 + ηt (24)

The parameter πA is the steady state inflation rate and Ek
t denotes the forecast of economic

agents with planning horizon of length k. We follow Del Negro and Eusepi (2011) and allow
for measurement error, ηt, when including inflation expectations as an observable. The
measurement error follows an AR(1) process:

ηt = ρηηt−1 + ϵη,t, with ϵη,t
iid∼ N

(
0, σ2

η

)
.
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Note that the expectation used here is the agent’s (non-rational) expectations, Ek
t [·]. This

will not align with the expectation of inflation generated by the autoregressive solution of
the model (e.g., equation (19)). Thus, it’s not a priori obvious that this addition will im-
prove forecasting performance of the model. Gust et al. (2023) derive the expression for
this expectation. They show the FHP model with inflation expectations as an additional
observable fits the data from 1966 to 2007 well in sample, and that the estimated model
is consistent with many stylized facts about the relationship between inflation forecasts,
forecast errors, and revisions. The formulation in equation (24) embodies the “noise” rep-
resentation of additional information, rather than the “news” one, where in expectations
observables contain informing regarding “future” shocks. Del Negro and Schorfheide (2013)
contains more information about these two paradigms.

We use the Survey of Professional Forecasters (SPF) to construct expected GDP-deflator
inflation, using the survey’s mean. This survey is available in the middle of each quarter, and
thus is available for the second Tealbook of each quarter. For this exercise, we re-estimate
the model with inflation expectations. This allows us to get estimates for the size of the
measurement error parameters ρη and σ2

η which are crucial for determining the information
content of this observable. Gust et al. (2023) contains more in depth discussion of this point.

Figure 4 about here.

Figure 4 again shows rolling RMSEs for the models, this time including the FHP model
which incorporates inflation expectations data as a noisy measure of the subjective expec-
tation of the (non rational) agents expectations. The additional (red) line tracks the rolling
RMSEs for output growth and inflation in the FHP model with expected inflation observ-
able. This variant of the FHP model performs better than the baseline FHP model, even
for forecasts of output growth during the crisis. More directly, the RMSE for inflation, once
these inflation expectation observables are added to the model, does not stay at its elevated
level. This is consistent with the evidence in Gust et al. (2023) that the FHP model with
inflation expectations as an observable fits the data well in sample. While adding inflation
expectations to the observation set may seem like begging the question, we stress a few
points. First, these data are mapped to the subjective expectation of the model’s agents,
which is not the same as the expectation generated by the model’s autoregressive solution.
Second, the measurement error in the inflation expectations observable is estimated from
the data, and is not set to zero. Third, prior to the Great Recession, augmenting the model
with this additional observable does not meaningfully improve forecast accuracy.
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5 Density Forecasts
While we have focused on point forecasts following much of the literature, a DSGE model can
typically generate an entire probabilistic forecast (see the algorithm in Section 2). Indeed,
this is one of the strengths of the DSGE model approach relative to a judgmental forecast
for which generating a probabilistic forecast is difficult and extremely costly. Herbst and
Schorfheide (2012) and Wolters (2015) are among the papers that have evaluated these
density forecasts, building on a large statistics literature. Here we focus on whether the
density forecast from the FHP model is well calibrated, in that the realization of events is
commensurate with the probability assigned to them by the predictive distribution over a
long enough sample. Dawid (1984) argues for the prequential approach where models are
evaluated against the performance of their predictive distribution.

Of course, calibration is only one component of a good density forecast. Moreover, a
density forecast can be well calibrated while not being informative: a canonical example is
a weather forecast which merely reports the unconditional probability of rain. In addition,
one may desire a sharp density forecast, that is one whose inverse variance is small. A sharp
predictive distribution is one that assigns high probability to a small set of outcomes. A
sharp predictive distribution may be desirable because it allows a forecaster to make more
precise statements about the future.

In this chapter, however, we focus on calibration, and in particular we evaluate probability
integral transformations of the density forecasts. The probability integral transformation of
a random variable y is the random variable F (y), where F is the cumulative distribution
function of y—see Dawid (1984) and Kling and Bessler (1989) for details. If y is a random
variable with a continuous distribution, then F (Y ) is uniformly distributed on [0, 1], as
shown in Rosenblatt (1952). In addition, if y is a time series Y1:T , Diebold et al. (1998) show
that the PITs are independent and identically distributed (i.i.d.) as uniform variables. We
use the probability integral transformation to evaluate the calibration of the FHP model’s
density forecasts.

Figure 5 about here.

Figure 5 shows the histogram associated with the PITs with the FHP model for h = 1 (top
panel) and h = 4 (bottom panel). The histograms are constructed using 5 bins, so that
a uniform histogram would be evenly sized, each containing twenty percent of the PITs.
Evidently, the PITs depart from uniformity. For h = 1, the left-most bin for each of the
three observables is empty. This means that the FHP model assigns far too much probability
to low outcomes for output growth, inflation and the federal funds rate. For output growth
and the federal funds rate, the right tail of the predictive distribution also sees too few
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realizations, with the problem particularly pronounced for the federal funds rate. Given
the persistent nature of the federal funds rate, this is not surprising. Outside the oversized
left tail, the PITs for inflation for h = 1 are roughly well calibrated. For h = 4, the PITs
exhibit similar characteristics: the left tail of the distribution remains too large for all three
variables, and most of the realizations occur in the center of the distribution. Figure 6
displays corresponding PITs for the Smets-Wouters model. The model, though larger than
the FHP model, displays similar PITs, with the left tail being oversized for all three variables
at both horizons.

Figure 6 about here.

5.1 Adding Stochastic Volatility

The calibration of the density forecasts from both models is poor. A key reason for this is
that sample period includes periods of considerable volatility and of low volatility, i.e., the
Great Moderation, see McConnell and Perez-Quiros (2000). Justiniano and Primiceri (2008)
argue that explicitly modeling this kind of time-variation is important in correctly capturing
business cycle dynamics. We incorporate their approach into the FHP model. We adapt the
shock specification in equations (15) – (17) as follows:

ξt = ρξξt−1 + εξt , εξt ∼ N
(
0, σ2

ξ,t

)
, (25)

y∗t = ρyy
∗
t−1 + εyt , εyt ∼ N

(
0, σ2

y,t

)
, (26)

i∗t = ρii
∗
t−1 + εit, εit ∼ N

(
0, σ2

i,t

)
.. (27)

The standard deviations σξ,t, σy,t, and σi,t are now time-varying and evolve according to the
stochastic volatility process:

ln(σξ,t) = ρσξ
ln(σξ,t−1) + ηξ,t, ηξ,t ∼ N

(
0, σ2

ηξ

)
, (28)

ln(σy,t) = ρσy ln(σy,t−1) + ηy,t, ηy,t ∼ N
(
0, σ2

ηy

)
, (29)

ln(σi,t) = ρσi
ln(σi,t−1) + ηi,t, ηi,t ∼ N

(
0, σ2

ηi

)
. (30)

Diebold et al. (2017) show that this kind of specification can help improve the performance
interval and density forecasts. We denote this model as the FHPsv model and estimate the
model on our 96 real time vintages of data.

Figure 7 about here.

Figure 7 displays the estimated volatilities for the final vintage of data, i.e., the 12th of
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December 2017. As can be seen from the figure, there is considerable time variation in the
standard deviation of the shocks. The early sample is characterized by a high volatility
regime, which then falls during the Great Moderation.

Table 1 about here.

We first examine the RMSE ratios associated with the FHPsv model and compare them to
the FHP model. Table 1 displays the RMSE ratios of the two models for horizons h = 1 and
h = 4. As can be seen, the inclusion of stochastic volatility does not leads to an improve in
point forecasting of output growth forecast at both horizons—the RMSE ratio is less than
one—but a deterioration for inflation and the federal funds rate.

Figure 8 about here.

Figure 8 displays the histograms of the PITs for the FHPsv model. Relative to the constant
volatility case, the distribution of the PITs at h = 1 is somewhat more uniform. At h = 4,
however, now the right tail of the predictive densities for inflation and the federal funds
rate are too small, with the PIT histogram exhibiting a sharp spike in its largest quintile.
Essentially, the model is now too confident in its prediction about low inflation over the
2010, resulting in poor density forecasts.

6 Nonlinearities: The Zero Lower Bound and COVID
The model described in Section 3 is linear. This makes it easy to estimate, evaluate, and
forecast with. However, most DSGE models are inherently nonlinear. That is, the optimal-
ity conditions the make up part of the model’s equilibrium conditions are sets of nonlinear
equations. And these nonlinearities are ignored in the linearized model, which locally ap-
proximates the solution near the model’s steady state. Both recent advances in computation
and striving for greater realism have led to the development of more empirically suited non-
linear DSGE models. The presence of large shocks to the economy, such as the financial
crisis and the COVID-19 pandemic, as well as the obvious nonlinearity in the zero lower
bound, and concepts like occasionally binding financial constraints have led to the develop-
ment of nonlinear DSGE models. That said, nonlinear DSGE models are much more difficult
to estimate and evaluate, and the value of their additional realism is not always clear for
forecasting purposes. For instance, Ratto and Giovannini (2017) argue that occasionally
binding financial constraints improve forecasting performance during the Great Recession,
but Chin (2022) compares the forecast accuracy of a linearized version of a DSGE model
against the fully nonlinear model (still ignoring the zero lower bound constraint), finding
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no evidence of superiority of the nonlinear model in point forecasting. Aruoba et al. (2017)
argue that nonlinearities outside of obvious ones like the zero lower bound may be difficult
to uncover with aggregate data.
The zero lower bound. There are two general approaches to modeling the zero lower bound:
using global methods and piecewise linear methods. Global methods incorporate the zero
lower bound constraint into the model’s nonlinear equilibrium conditions. Examples of this
include Fernández-Villaverde et al. (2015), Gust et al. (2017), and Aruoba et al. (2018).
These kinds of models typically are computationally challenging and highly stylized outside
of the modeling of the monetary policy. Thus far, their applicability for prediction has been
limited. Piecewise linear models, on the other hand, augment the linearized equilibrium
conditions with a zero lower bound constraint. Examples of this technique include Guerrieri
and Iacoviello (2015), Holden (2016), Boehl (2022), Jones (forthcoming). Aruoba et al.
(2020) explicitly incorporate the risk associated with an addition of the constraint, a feature
missing in most of these methodologies.

The piecewise linear approach, because of its computational advantages, has seen far more
use than the global solution-based one. That said, Hirose and Inoue (2016) and Atkinson
et al. (2020) have little difference in parameter estimates for models with and without the
zero lower bound. In practice, models estimated omitted the zero lower bound, but with
forecasts conditional on the zero lower bound constraint—by adding, say, information on the
expected path of the federal funds rate—tend to generate similar predictions as piecewise
linear models. That said, this area remains an important topic of research—even for reduced
form models, see Mavroeidis (2022). The zero lower bound is likely to be a feature of the
macroeconomy for the foreseeable future. One challenge for the FHP model in particular is
with short planning horizons, the FHP model is less affected by news about the future rates.
While this ameliorates some undesirable features found in rational expectations models (the
forward guidance puzzle), it also means that the FHP model generates similar forecasts with
and without the constraint.
COVID-19. The COVID-19 pandemic was associated with a period of extremely high
macroeconomic volatility as well as large monetary and fiscal shocks. The initial shock
was arguably outside the scope of most DSGE models designed to capture normal business
cycle fluctuations. That said, DSGE models were useful tools for generating predictions and
policy counterfactuals. For example, Bodenstein et al. (2021) use a DSGE to provide plausi-
ble trajectories of the recovery from the COVID recession. Eichenbaum et al. (2022) provide
an overview of epidemics embedded into New Keynesian models. Cardani et al. (2021) ex-
amine the Eurozone over this period and Lepetit and Fuentes-Albero (2022) investigate the
power of monetary policy.
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There is still debate on in the literature on how to incorporate the COVID period into the
estimation of DSGE models. More reduced form approaches have suggested the incorporation
of outliers, e.g., Antolin-Diaz et al. (2020) and Carriero et al. (2021). A difficulty here is
that the DSGE model shocks all have a structural interpretation, so that assigning outliers
among them is nontrivial. An additional approach would be to treat the observations in
2020Q2 and 2020Q3 as missing data, and to ignore the period when evaluating forecasts.

7 Conclusion
This chapter has focused on DSGE model forecasts, with particular emphasis on a behavioral
New Keynesian model, as DSGE moves more towards behavioral realism. The forecasting
performance of this model, however, is uneven, with extremely good performance in the first
part of our evaluation sample, and poor performance afterwards. Incorporating more data
reverses this deterioration, however, indicating that departures from rational expectations
can lead to satisfactory forecasting performance.

Above all, however, the time variation in predictive power, coupled with the changing
dynamics in macroeconomic data found in, for instance, the zero lower bound or COVID-19
recession, shows that model dynamic changes will be important for macroeconomic forecast-
ing. This could take the form of explicit time-varying models or time-varying combinations
of forecasts from multiple models.
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8 Figures and Tables
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Figure 1: DSGE vs. Tealbook: 1994-2017

Notes: The figure shows RMSEs for h-step ahead forecasts for the FHP model (blue lines),
the SW model (orange lines), and the FRB staff forecast (green lines) for real output growth
(left panel), GDP deflator inflation (middle panel), and the federal funds rate (right panel.)
All variables are expressed in quarterly terms.
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Figure 2: DSGE vs. Tealbook: 1994-2006

Notes: The figure shows RMSEs for h-step ahead forecasts for the FHP model (blue lines),
the SW model (orange lines), and the FRB staff forecast (green lines) for real output growth
(left panel), GDP deflator inflation (middle panel), and the federal funds rate (right panel.)
All variables are expressed in quarterly terms.
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Figure 3: 5 Year Rolling Window RMSEs
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(b) h = 4
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Notes: The figure shows 5 year rolling window RMSEs of 1-step ahead (top panel) and 4-step
ahead (bottom panel) of forecasts for the FHP model (blue lines), the SW model (orange
lines), and the FRB staff forecast (green lines) for real output growth (left panel), GDP
deflator inflation (middle panel), and the federal funds rate (right panel.) All variables are
expressed in quarterly terms.
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Figure 4: 5 Year Rolling Window RMSEs with Additional Information
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(b) h = 4
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Notes: The figure shows 5 year rolling window RMSEs of 1-step ahead (top panel) and 4-step
ahead (bottom panel) of forecasts for the FHP model (blue lines), the SW model (orange
lines), the FRB staff forecast (green lines), and the FHP model augmented with an inflation
expectations observable, for real output growth (left panel), GDP deflator inflation (middle
panel), and the federal funds rate (right panel.) All variables are expressed in quarterly
terms.
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Figure 5: PITs for the FHP Model
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(b) h = 4
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Notes: Figure show PITs for the FHP model for h = 1 and h = 4. Sample period
1994-2017.
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Figure 6: PITs for the Smets-Wouters Model
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(b) h = 4
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Notes: Figure show PITs for the Smets-Wouters model for h = 1 and h = 4. Sample
period 1994-2017.
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Figure 7: Estimated Stochastic Volatilities: FHP Model

Notes: The figure shows the estimated stochastic volatilities σξ,t, σy,t, σi,t for the FHP model.
The solid lines show the posterior mean, the light shaded region denotes the 90 percent
pointwise credible interval, and the dark shaded region denotes the 68 percent pointwise
credible interval.
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Table 1: RMSE Ratios: FHPsv vs. FHP Model

h Output Growth Inflation Federal Funds Rate
1 0.85 1.02 1.07
4 0.94 1.11 1.27
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Figure 8: PITs for the FHPsv Model
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(b) h = 4
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Appendix for
“Forecasting With DSGE Models”

A Prior Distribution

Table 2: Prior Distributions

Parameter Distribution
Type Par(1) Par(2)

rA Gamma 2 1
πA Normal 4 1
µQ Normal 0.5 0.1
(ρ, γ, γf ) Uniform 0 1
σ Gamma 2 0.5
κ Gamma 0.05 0.1
ϕπ Gamma 1.5 0.25
ϕy Gamma 0.25 0.25
(σξ, σy∗ , σi∗) Inv. Gamma 1 4
(ρξ, ρy∗ , ρi∗) Uniform 0 1

Table notes: Par(1) and Par(2) correspond to the mean and standard deviation of the
Gamma and Normal distributions and to the upper and lower bounds of the support for the
Uniform distribution. For the Inv. Gamma distribution, Par(1) and Par(2) refer to s and ν

where p(σ|ν, s) is proportional to σ−ν−1e−νs2/2σ2 .
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B Details of the Data Set Construction
1. Per Capita Real Output Growth. Take the level of real gross domestic product,

(FRED mnemonic “GDPC1”), call it GDPt. Take the quarterly average of the Civilian
Non-institutional Population (FRED mnemonic “CNP16OV” / BLS series “LNS10000000”),
call it POPt. Then,

Per Capita Real Output Growth

= 100

[
ln

(
GDPt

POPt

)
− ln

(
GDPt−1

POPt−1

)]
.

2. Annualized Inflation. Take the GDP deflator, (FRED mnemonic “GDPDEF”), call
it PGDPt. Then,

Annualized Inflation = 400 ln

(
PGDPt

PGDPt−1

)
.

3. Federal Funds Rate. Take the effective federal funds rate (FRED mnemonic “FED-
FUNDS”), call it FFRt. Then,

Federal Funds Rate = FFRt.
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C The Smets-Wouters (2007) Model
The equilibrium conditions of the Smets and Wouters (2007) model take the following form:

ŷt = cy ĉt + iy ît + zyẑt + εgt (31)

ĉt =
h/γ

1 + h/γ
ĉt−1 +

1

1 + h/γ
Etĉt+1 +

wlc(σc − 1)

σc(1 + h/γ)
(l̂t − Etl̂t+1) (32)

− 1− h/γ

(1 + h/γ)σc
(r̂t − Etπ̂t+1)−

1− h/γ

(1 + h/γ)σc
εbt

ît =
1

1 + βγ(1−σc)
ît−1 +

βγ(1−σc)

1 + βγ(1−σc)
Etît+1 +

1

φγ2(1 + βγ(1−σc))
q̂t + εit (33)

q̂t = β(1− δ)γ−σcEtq̂t+1 − r̂t + Etπ̂t+1 + (1− β(1− δ)γ−σc)Etr̂
k
t+1 − εbt (34)

ŷt = Φ(αk̂st + (1− α)l̂t + εat ) (35)
k̂st = k̂t−1 + ẑt (36)

ẑt =
1− ψ

ψ
r̂kt (37)

k̂t =
(1− δ)

γ
k̂t−1 + (1− (1− δ)/γ)̂it + (1− (1− δ)/γ)φγ2(1 + βγ(1−σc))εit (38)

µ̂p
t = α(k̂st − l̂t)− ŵt + εat (39)

π̂t =
βγ(1−σc)

1 + ιpβγ(1−σc)
Etπ̂t+1 +

ιp
1 + βγ(1−σc)

π̂t−1 (40)

− (1− βγ(1−σc)ξp)(1− ξp)

(1 + ιpβγ(1−σc))(1 + (Φ− 1)εp)ξp
µ̂p
t + εpt

r̂kt = l̂t + ŵt − k̂st (41)

µ̂w
t = ŵt − σl l̂t −

1

1− h/γ
(ĉt − h/γĉt−1) (42)

ŵt =
βγ(1−σc)

1 + βγ(1−σc)
(Etŵt+1 + Etπ̂t+1) +

1

1 + βγ(1−σc)
(ŵt−1 − ιwπ̂t−1) (43)

−1 + βγ(1−σc)ιw
1 + βγ(1−σc)

π̂t −
(1− βγ(1−σc)ξw)(1− ξw)

(1 + βγ(1−σc))(1 + (λw − 1)ϵw)ξw
µ̂w
t + εwt

r̂t = ρr̂t−1 + (1− ρ)(rππ̂t + ry(ŷt − ŷ∗t )) (44)
+r∆y((ŷt − ŷ∗t )− (ŷt−1 − ŷ∗t−1)) + εrt .
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The exogenous shocks evolve according to

εat = ρaε
a
t−1 + ηat (45)

εbt = ρbε
b
t−1 + ηbt (46)

εgt = ρgε
a
t−1 + ρgaη

a
t + ηgt (47)

εit = ρiε
i
t−1 + ηit (48)

εrt = ρrε
r
t−1 + ηrt (49)

εpt = ρrε
p
t−1 + ηpt − µpη

p
t−1 (50)

εwt = ρwε
w
t−1 + ηwt − µwη

w
t−1. (51)

The counterfactual no-rigidity prices and quantities evolve according to

ŷ∗t = cy ĉ
∗
t + iy î

∗
t + zyẑ

∗
t + εgt (52)

ĉ∗t =
h/γ

1 + h/γ
ĉ∗t−1 +

1

1 + h/γ
Etĉ

∗
t+1 +

wlc(σc − 1)

σc(1 + h/γ)
(l̂∗t − Etl̂

∗
t+1) (53)

− 1− h/γ

(1 + h/γ)σc
r∗t −

1− h/γ

(1 + h/γ)σc
εbt

î∗t =
1

1 + βγ(1−σc)
î∗t−1 +

βγ(1−σc)

1 + βγ(1−σc)
Etî

∗
t+1 +

1

φγ2(1 + βγ(1−σc))
q̂∗t + εit (54)

q̂∗t = β(1− δ)γ−σcEtq̂
∗
t+1 − r∗t + (1− β(1− δ)γ−σc)Etr

k∗
t+1 − εbt (55)

ŷ∗t = Φ(αks∗t + (1− α)l̂∗t + εat ) (56)
k̂s∗t = k∗t−1 + z∗t (57)

ẑ∗t =
1− ψ

ψ
r̂k∗t (58)

k̂∗t =
(1− δ)

γ
k̂∗t−1 + (1− (1− δ)/γ)̂it + (1− (1− δ)/γ)φγ2(1 + βγ(1−σc))εit (59)

ŵ∗
t = α(k̂s∗t − l̂∗t ) + εat (60)

r̂k∗t = l̂∗t + ŵ∗
t − k̂∗t (61)

ŵ∗
t = σl l̂

∗
t +

1

1− h/γ
(ĉ∗t + h/γĉ∗t−1). (62)
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The steady state (ratios) that appear in the measurement equation or the log-linearized
equilibrium conditions are given by

γ = γ̄/100 + 1 (63)
π∗ = π̄/100 + 1 (64)
r̄ = 100(β−1γσcπ∗ − 1) (65)

rkss = γσc/β − (1− δ) (66)

wss =

(
αα(1− α)(1−α)

Φrkss
α

) 1
1−α

(67)

ik = (1− (1− δ)/γ)γ (68)

lk =
1− α

α

rkss
wss

(69)

ky = Φl
(α−1)
k (70)

iy = (γ − 1 + δ)ky (71)
cy = 1− gy − iy (72)
zy = rkssky (73)

wlc =
1

λw

1− α

α

rkssky
cy

. (74)
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Table 3: SW Model: Prior Distribution

Parameter Type Para (1) Para (2) Parameter Type Para (1) Para (2)
φ Normal 4.00 1.50 α Normal 0.30 0.05
σc Normal 1.50 0.37 ρa Beta 0.50 0.20
h Beta 0.70 0.10 ρb Beta 0.50 0.20
ξw Beta 0.50 0.10 ρg Beta 0.50 0.20
σl Normal 2.00 0.75 ρi Beta 0.50 0.20
ξp Beta 0.50 0.10 ρr Beta 0.50 0.20
ιw Beta 0.50 0.15 ρp Beta 0.50 0.20
ιp Beta 0.50 0.15 ρw Beta 0.50 0.20
ψ Beta 0.50 0.15 µp Beta 0.50 0.20
Φ Normal 1.25 0.12 µw Beta 0.50 0.20
rπ Normal 1.50 0.25 ρga Beta 0.50 0.20
ρ Beta 0.75 0.10 σa Inv. Gamma 0.10 2.00
ry Normal 0.12 0.05 σb Inv. Gamma 0.10 2.00
r∆y Normal 0.12 0.05 σg Inv. Gamma 0.10 2.00
π Gamma 0.62 0.10 σi Inv. Gamma 0.10 2.00

100(β−1 − 1) Gamma 0.25 0.10 σr Inv. Gamma 0.10 2.00
l Normal 0.00 2.00 σp Inv. Gamma 0.10 2.00
γ Normal 0.40 0.10 σw Inv. Gamma 0.10 2.00

Notes: Para (1) and Para (2) correspond to the mean and standard deviation of the Beta,
Gamma, and Normal distributions and to the upper and lower bounds of the support for
the Uniform distribution. For the Inv. Gamma distribution, Para (1) and Para (2) refer to
s and ν, where p(σ|ν, s) ∝ σ−ν−1e−νs2/2σ2 .
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