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Abstract

Local projections (LPs) are a popular tool in macroeconomic research. We show that LPs

are often used with very small samples in the time dimension and, consequently, that LP point

estimates can be severely biased. Under regularity conditions, we derive simple expressions

to approximate this bias and propose a way to correct for bias in LPs. Using a medium-

scale macroeconomic time-series model, we demonstrate that the bias in point estimates can

be economically meaningful. We also show that the same small-sample bias issue can also lead

some autocorrelation-robust standard errors to understate sampling uncertainty.

1 Introduction

We show that if a time series is persistent—as is generally the case when researchers are interested in

impulse responses—then estimators of impulse responses by local projections (LPs) can be severely

biased in sample sizes commonly found in the empirical macroeconomics literature.

Starting with Jordà (2005), LPs have been used by researchers as an alternative to other time

series methods, such as vector autoregressions (VARs). We survey the literature and find that,

over the past 15 years, LPs have been applied in a variety of settings that are notably different

from the setting studied in Jordà (2005). In particular, we find that sample sizes in the time
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dimension are typically much smaller than the sample sizes studied in Jordà (2005) and that LPs

have become increasingly prevalent when researchers also have a cross section of data (i.e., panel

data). Additionally, researchers often approach LPs with identified structural shocks in hand,

rather than identifying those shocks as a part of the estimation.1 We focus on this idealized case

in this paper as it is a natural benchmark for understanding the methodology.

We analyze the small-sample bias in LPs using a higher-order expansion of the LP estimator,

building on the related work of Kendall (1954), Nagar (1959), Rilstone et al. (1996), and Bao and

Ullah (2007). We show that the approximate bias of the LP estimator at horizon h is a function—

specifically, a weighted sum—of the (population) impulse response function (IRF) at horizons up

to h. As a result, if the data are positively autocorrelated and LP estimators across horizons have

the same sign (as is the case for hump-shaped impulse responses), then the least-squares estimators

are biased toward zero at every horizon. Additionally, our analysis highlights that the small-sample

estimates from LPs are not “local” because the small-sample biases of those estimates depend on

the true impulse responses at other horizons.

Using Monte Carlo analysis, we demonstrate that the magnitude of the bias in LPs can be

large when sample sizes in the time dimension are similar to those typically found in the empirical

macroeconomics literature. We conduct our Monte Carlo simulations using simple, linear data gen-

erating processes and an estimated medium-scale macroeconomic VAR. While researchers may be

drawn to LPs because they invoke fewer parametric restrictions than other methods, an important

standard for this methodology is that it performs well in these simple scenarios.

The expression for the approximate bias that we derive can be used to correct for bias in LP

estimators. In our Monte Carlo simulations, our bias-corrected estimators are on average markedly

closer to the true values of the impulse responses.2 We discuss the tradeoff that researchers face

between reducing bias and potentially increasing the mean squared error (MSE) of the estimator.

We note that the bias correction does not uniformly increase or decrease MSE in our Monte Carlo

simulations.

We extend our analysis to settings using panel data and show that—when using fixed effects—

the bias we document persists. We derive formulas to approximate the bias, which could be used
1In what follows, we always refer to the regressor associated with the LP coefficient as the “shock.”
2Because our bias correction does not completely eliminate small-sample bias, researchers in some settings may

prefer methods, such as VARs, that estimate the same impulse responses as LPs (see Plagborg-Møller and Wolf

(2021)) and have well understood and effective methods for bias correction (see Kilian (1998)). For a comprehensive

comparison among different methods, see Li and Wolf (2022).
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to bias-correct LP estimators. We show that increasing the number of entities in the panel will not

eliminate the bias.

We also study the downward bias in commonly-used standard errors for LP estimators.

Our analysis of standard errors is related to recent work by Montiel Olea and Plagborg-Møller

(2021), who suggest that researchers using LPs should use heteroskedasticity-consistent, but not

autocorrelation-robust, standard errors. Our focus on finite-sample issues leads us to similar con-

clusions, but for different reasons. We show that small-sample bias can be an important consid-

eration when using Newey and West (1987) (NW) standard errors. These standard errors rely

on estimators of the autocorrelation of the regression score. In finite samples, the estimators of

these autocorrelations will be biased for reasons similar to those that cause bias in LP point es-

timators. In important, empirically realistic settings, the bias will be downward, yielding smaller

estimates of standard errors. This result suggests researchers may prefer standard errors that are

heteroskedasticity-consistent but not autocorrelation-robust, such as those studied in Huber (1967)

and White (1980) (HW). Alternatively, researchers may want to consider alternative heteroskedas-

ticity and autocorrelation robust (HAR) standard errors, like those discussed in Müller (2014), Sun

(2014), and Lazarus et al. (2018).

Our paper is related to work by Kilian and Kim (2011), who study the coverage probabilities

for confidence intervals for LP estimators using bootstrap methods. Their work focuses on the

case when shocks are identified as a part of the LP estimation and uses the block bootstrap to

approximate the finite sample distribution of the least-squares estimate. By contrast, our analysis

relies on higher-order expansions of the least-squares estimator, which illustrates the reasons that

the least-squares estimator is biased and provides a natural bias correction without bootstrapping.

More generally, our paper is related to work on bias in least-squares estimators of autocorrelation

(such as in Kendall (1954) and Shaman and Stine (1988)), in VARs (such as in Nicholls and Pope

(1988) and Pope (1990)), dynamic panel data settings (such as in Nickell (1981) and Hahn and

Kuersteiner (2002)), and in generalized method of moments systems (Rilstone et al. (1996), Newey

and Smith (2004), Anatolyev (2005), and Bao and Ullah (2007)). We apply this work in our LP

setting.

The paper is structured as follows. In Section 2, we presents evidence on the ways that LPs

are used in the academic literature. In Section 3, we derive an analytic expression for the bias in

least-squares estimators of LPs and suggest a bias correction. We extend our analysis to the context

of panel data in Section 4. In Section 5, we explore LP bias and bias correction in the context of
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a time-series model similar to the one studied in Christiano et al. (2005). We then analyze bias of

commonly-used standard errors for least-squares LP estimators in Section 6. Section 7 concludes.

2 Some evidence on the use of LPs

To get a sense of how LPs are used in the literature, we examine the 100 “most relevant” papers

citing Jordà (2005) on Google Scholar.3 Google Scholar’s relevance ranking weighs the text of the

document, the authors, the source of the publication, and the number of citations. Of these 100

papers, 71 employed LPs in an empirical project (rather than merely citing but not applying LPs).4

The focus of this paper is parameter bias associated with short time series, so for each of the

studies we recorded the length of the time series, T , in the main LP in each of these papers. About

two-thirds of the papers surveyed employed panel data. As we show in Section 4, with entity-specific

fixed effects, the time dimension is still the relevant component of the sample size for determining

the LP bias. Because many of the panel data sets are unbalanced, constructing a single summary T

is challenging. For unbalanced panels, we summarize the size of the time dimension using the mean

T across entities, when readily available, or using the largest value of T across entities. In general,

our assessment of T is conservative in the sense that it overestimates the time series dimension of

the data for many of the LP applications. It is not unusual, for example, to see unbalanced panels

that have an average T that is less than half of the time-series dimension of the entire panel or

to see robustness exercises that use a small fraction of the data series. In these cases, we use the

entire time series dimension of the panel, which biases our estimates of T upward.

Figure 1 displays a histogram of the sample of 71 T s collected in our literature review. The

median T (the red dash-dotted line) is around 95. These sample sizes are significantly smaller

than those typically used in empirical macroeconometrics papers, as most of the papers surveyed

here use the increasingly popular strategy of using observed shocks, such as the monetary policy

shocks of Romer and Romer (2004), rather than identified shocks from a VAR, as in Jordà (2005).

Constructing these observed shocks is often difficult and costly, so the time series are typically short

in length.

The application of LPs to such short time series does not seem to have been anticipated in

the early literature on LPs. In fact, the Monte Carlo studies in Jordà (2005) used T = 300 and
3We conducted this search in October 2019. See Appendix F for the list of citations.
4If a paper appeared as both a working paper and a published paper, we excluded the working paper version from

our analysis.
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Figure 1: T is small in the literature using LPs.

T = 496 (the orange dashed lines in Figure 1). Less than 6 percent of the surveyed studies use

sample sizes at least that large. While many studies in our survey use annual or quarterly data,

Jordà (2005) used monthly data. In general, however, increasing T by using monthly data rather

than quarterly or annual data will not eliminate the issue of small-sample bias in LPs because the

monthly series are likely to be more persistent, and the bias in LPs is more severe when the data

are more persistent.

3 Bias in LPs

In this section, we analyze the bias in LPs using a Nagar (1959) expansion. We focus on LPs

that estimate the impulse response of a macroeconomic variable, yt, to a structural shock, εt. As

mentioned in the introduction, the structural shock is observed, and inference is conducted, using

linear, least-squares regression. The LP model is the set of regression models indexed by the impulse

response horizon, h,

yt+h = αh + β′hxt + uh,t, h = 0, . . . , H. (1)

where xt = [εt, c
′
t−1]

′ contains the structural shock and (time t−1) controls. For ease of exposition,

we assume the control vector, ct−1, is not empty—in practice, researchers use ct−1 to condition

inference on information available at time t − 1. The first elements of the coefficient vectors

{βh}Hh=0 trace out the impulse response of interest. We denote the H + 1 vector describing the
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impulse response by θ with elements θh for h = 0, . . . , H. That is, θ = [θ0, θ1, . . . , θH ]′, where

θh = βh,1 (the first element of βh). As in the empirical macroeconomics literature, we estimate

each βh using ordinary least squares. We denote the estimator of the βh by β̂h,LS and the estimator

of the impulse response by θ̂LS .5

3.1 The approximate bias of the least-squares estimator

To ease notation and without loss of generality, we assume throughout the paper that the data

we consider have a mean of zero. To facilitate the derivation of the bias we make the following

assumption about the time series properties of yt, εt and ct−1.

Assumption 1. The series wt = [yt, εt, c
′
t]
′ is strictly stationary and ergodic. The series has a

purely nondeterministic Wold representation with innovations ωt = [εt, ν
′
t]
′,

• εt is independent of εt+j for all j ̸= 0,

• εt is independent of νt+j for all j,

• E[xtx′t] is invertible, and E[||xtx′t||] is finite, where ||·|| denotes the 2-norm.

Our assumption about the properties of εt are meant to formalize what is meant by a structural

shock. The linearity of wt in all shocks is a stark assumption that facilitates the derivation of

closed-form expressions for the bias in LPs. Linearity in the shock of interest, εt, also represents

an idealized case where “direct causal inference”—as in Nakamura and Steinsson (2018)—is possi-

ble. Notably, in the case where wt is Gaussian and εt is iid, the conditions of Assumption 1 are

satisfied. We emphasize that violations of Assumption 1 do not imply that LPs are not biased

in small samples. Rather, violations of Assumption 1 make it difficult to characterize the small-

sample bias. In particular, our analytic expressions derived below depend on homoskedastic shocks.

Heteroskedasticity would complicate the analysis. In addition, we make the following assumption

about the regression errors from the LP.

Assumption 2. The regression error, uh,t, is independent of εt−j and νt−j−1 for all j ≥ 0.

This assumption formalizes what we mean by conditioning inference on information available at time

t−1 by including ct−1 in the LP. This guarantees that the regression error will be at most an MA(h)

5It is also common in the LP literature to use yt+h − yt−1 as the left-hand side variable. If yt − yt−1 can be

included in wt, as defined in Assumption 1, and so long as our assumptions still hold, then Analytical Result 1 holds.

Analogous results to other results in the paper can be derived using straightforward modifications to our analysis.
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in νt and an MA(h−1) in εt, representing an idealized case where the controls perfectly control for

time t − 1 information. This effectively truncates the terms in the approximate bias, simplifying

the subsequent analysis considerably. As with Assumption 1, a violation of Assumption 2 does not

imply a lack of bias; we discuss implications of departures from this assumption later in the paper.

We can now state our main analytical result regarding the approximate bias in LPs.

Analytical Result 1 (Expression for the approximate bias in LPs). Under Assumptions 1–2, the

approximate bias of the LP in (1) is given by

E
[
θ̂h,LS

]
− θh = Bh,LP +O

(
T−3/2

)
, (2)

where

Bh,LP = − 1

T − h

h∑
j=1

(
1 + tr

{
Σ−1
c,0Σc,j

})
θh−j for h > 0, (3)

Σc,j = E [ct−jc
′
t], and tr{·} is the trace operator. Additionally, B0,LP = 0.

The derivation of equations (2) and (3) relies on the methodology of Bao and Ullah (2007).6 A

detailed derivation is in Appendix A. We refer to Bh,LP as the approximate bias. Several remarks

regarding Analytical Result 1 are in order. First, |Bh,LP | is a decreasing function of T ; for fixed

h, the least-squares estimator is consistent. Second, Bh,LP is a function of the impulse response

coefficients at all horizons up to h. Intuitively, the data generating process affects the bias at

similar horizons in similar ways. Conditioning inference on information available at time t − 1,

however, truncates the terms that contribute to the bias by eliminating the autocorrelation in the

regression errors at sufficiently large lags.7 Third, the contribution of θh−j to Bh,LP is scaled by
6Some additional technical remarks regarding our analytical framework are in order. The least-squares estimator

can be cast as a k-class estimator—see Theil (1961). The characteristics of k-class estimators are important for the

study of parameter bias (both finite sample and asymptotic) in simultaneous equations models, in particular for the

study of (weak) instrumental variables. Sawa (1972) shows that for many k-class estimators the first moment may

not even exist, rendering the approximations in this paper inaccurate—see also Srinivasan (1970). We acknowledge

this limitation but note that with the additional assumption of normality—following Sawa (1972)—one can guarantee

the existence of the first moment of θ̂LS . Additionally, one can think of the stochastic terms used in the procedure of

Bao and Ullah (2007) as offering an approximation of the true finite sample distribution of θ̂LS . This approximation

may have finite moments even when the exact distribution of θ̂LS does not. We always assume E[θ̂h,LS ] exists.
7An earlier version of the paper examined the bias in the alternative polar case: LPs without controls. This LP

violates Assumption 2 and requires a slightly different derivation. In the AR(1) model here, the bias is given by the

following: (1− ρ−(T−h))(ρT − ρh+1)/(1− ρ). This expression can be smaller or larger than the approximate bias in

Equation 6, depending on ρ, h, and T . Appendix A.2 and Herbst and Johannsen (2021) provide more details on the

bias in LPs without controls.
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1 + tr
{
Σ−1
c,0Σc,j

}
. When controls are relatively persistent this scaling factor is relatively large.

Fourth, intuitively B0,LP = 0 because the structural shock, εt, is iid and u0,t is independent over

time.

It is useful to parse the contribution to Bh,LS that is due to estimating αh. To this end, we

derive the approximate bias when αh is known.

Analytical Result 2 (Expression for the approximate bias in LPs when αh is known). Under

Assumptions 1–2, and under the additional assumption that αh is known, the expression for the

bias in (1) is given by

E
[
θ̂h,LS

]
− θh = − 1

T − h

h∑
j=1

tr
{
Σ−1
c,0Σc,j

}
θh−j +O

(
T−3/2

)
, (4)

where Σc,j and tr{·} are defined as they were in Analytical Result 1. Additionally, E
[
θ̂0,LS

]
− θ0 =

O(T−3/2).

From equation (4), it is immediately apparent that estimating αh adds the terms −(T−h)−1
∑h

j=1 θh

to the approximate bias. When θh > 0 and tr
{
Σ−1
c,0Σc,j

}
> 0, as is the case in many macroeconomic

settings, estimating αh increases the magnitude of the (negative) approximate bias.

3.2 An AR(1) example

Here we examine the approximate bias in LPs using a canonical AR(1) model for yt. In particular,

we assume that

yt = α+ θ0εt + ρyt−1 + νt with εt
iid∼ N(0, σ2ε) and νt

iid∼ N(0, σ2ν). (5)

Further, we assume that ρ ∈ (0, 1). The researcher observes {(yt, εt)}Tt=1 and estimates the LP

defined in equation (1) with ct−1 = yt−1 using ordinary least squares. This example satisfies

Assumptions 1 and 2.

3.2.1 Explicit approximate bias

Noting that θh = θ0ρ
h, it is easy to see from Analytical Result 1 that the approximate bias of the

LP is given by

Bh,LP =− 1

T − h

h∑
j=1

(
1 + ρj

)
θ0ρ

h−j = − θ0
T − h

(
1− ρh

1− ρ
+ hρh

)
. (6)
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The term (1−ρh)/(1−ρ) accounts for the bias arising from estimating the constant, αh, and the term

hρh accounts for the bias arising from the persistence of the control, ρ. If θ0 > 0 (a normalization),

Bh,LP ≤ 0 for all T and 0 < h < T . That is, the approximate bias is always downward. It is not

straightforward to say at which horizon the bias is largest: argmax0<h<T |Bh,LP | is a complicated

function of ρ and T because the component of the bias associated with estimating the constant is

generally decreasing in magnitude as ρ increases, whereas the component associated with persistent

regressors is increasing in magnitude.

3.2.2 Quality of the approximation

Here we analyze how well Bh,LP approximates the small-sample bias of θ̂h,LS by comparing the

approximate bias to the exact bias calculated using Monte Carlo simulations—using equation 5—

for various ρ and T . For this this exercise, we set σε = σν = 1 and θ0 = 1. The variance parameters

do not appear in Bh,LP .8 Figure 2 shows Bh,LP , along with the bias from the Monte Carlo. The

figure shows results for ρ ∈ {0.90, 0.95, 0.99} and T ∈ {50, 100, 200}.

For ρ = 0.9 and ρ = 0.95, Bh,LP is a good approximation of the exact small-sample bias in θ̂h,LS
for all h shown. The quality of the approximation improves somewhat as T increases. Clearly, when

ρ = 0.99, Bh,LP is not as good of an approximation as it is for smaller values of ρ. Nevertheless, even

with ρ = 0.99 and T = 50, Bh,LP captures salient features of the small-sample bias, including that it

is growing in magnitude in h over the values of h shown. We conclude that for empirically relevant

sample sizes, Bh,LP offers a reasonable approximation of the bias in LPs, though the quality of the

approximation is somewhat worse for smaller values of T and larger values of ρ. In Appendix C,

we show that similar results hold for an AR(2) model with hump-shaped impulse responses.

3.2.3 Comparison to a parametric approach

LP estimators are often compared to estimates of impulse responses from VARs. These discussions

are often centered around the different asymptotic bias and variance tradeoffs associated with the

(relatively flexible) LP and (tightly constrained) VAR estimators. A natural question is how the

small-sample bias of LP estimators compares to the small-sample bias of VAR estimators.9 To
8In Appendix C, we show that setting σε = 10σν = 1 or 10σε = σν = 1 has little effect on the quality of the

approximation offered by Bh,LP . In Appendix C, we also analyze approximate bias in the context of the results from

a Monte Carlo exercise under the assumption that the means of the data are known.
9The small-sample bias of VAR estimators has been explored by Nicholls and Pope (1988), Pope (1990), and

others. The non-recursive structure of LPs makes it difficult to extend these result to the settings we consider.
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address this, we compare Bh,LP to the small-sample bias arising from estimating the coefficients α,

θ0, and ρ in equation (5) using ordinary least squares and computing the h-period impulse response

as θ̂0,LS (ρ̂LS)
h. This approach, which we call the “AR approach,” is analogous to the estimation

of impulse responses using VARs when the researcher has the time series data for the structural

shock of interest.

To compute the approximate bias of the AR approach, we again use the methodology of Bao

and Ullah (2007). The resulting approximation is

E
[
θ̂0,LS ρ̂

h
LS

]
− θ0ρ

h = Bh,AR +O(T−3/2) (7)

where

Bh,AR = − θ0γ

T − 1

[
hρh−1 (1 + 3ρ)− 1

2
h (h− 1) ρh−2

(
1− ρ2

) ]
and γ =

σ2ν
σ2ν + θ20σ

2
ε

. (8)

The details of the derivation are in Appendix B. To understand the expression for Bh,AR, it is useful

to first analyze γ. Note that γ ∈ [0, 1] is the ratio of the variance of u0,t to the one-step-ahead

variance of yt. Larger values of γ increase the magnitude of |Bh,AR|. That is, when εt explains

relatively little of the variation in yt, γ and thus |Bh,AR| are larger. Conversely, when instead νt

explains relatively little of the variation in yt, γ and thus |Bh,AR| are smaller. As the variance of

the regression error collapses, the AR approach is less biased.

Several remarks about the relationship between Bh,AR and Bh,LP are in order. First, B0,AR =

B0,LP = 0. Second, in general, the values of Bh,AR and Bh,LP will not coincide for h > 0. Third, for

ρ ∈ (0, 1), Bh,AR cannot be signed for h > 0, unlike Bh,LP , which is never positive. Fourth, γ affects

Bh,AR but does not enter Bh,LP . That is, the approximate bias in the LP is not affected by the

amount of variation in yt that is explained by εt. While the magnitude and sign of Bh,AR −Bh,LP

depend on parameters of the AR(1) process and h, it is useful to consider a particular value of

γ = 1+ρ
1+3ρ , which sets B1,AR = B1,LP . Then, for ρ ∈ (0, 1) and h > 1,

Bh,AR = − 1

T − 1

(
hρh + hρh−1

)
+

1

T − 1

1

2
h (h− 1) ρh−2 1 + ρ

1 + 3ρ

(
1− ρ2

)
> Bh,LP . (9)

So, for any γ < 1+ρ
1+3ρ , Bh,AR − Bh,LP > 0 for all h > 1. This result illustrates that there are

parameter values for which the AR approach can be uniformly less negatively biased than the LP

approach. However, it is difficult to know whether these conditions hold without knowledge of the

data generating process. Above all, the AR(1) example illustrates that the small-sample bias in

LPs is different from the small-sample bias in VARs.10

10In VARs, researchers commonly employ the parametric bootstrap to correct for bias (see, for example, Kilian
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3.3 A bias corrected estimator

Analytical Result 1 suggests a bias-corrected estimator of θh using plug-in estimators of θj and Σc,j .

With enough data to calculate θ̂h,LS , all of the needed estimates of θj and Σc,j are easily computed.

Notably, the researcher could bias correct the coefficients using the least-squares estimates of θj .

We denote the estimator of θh constructed in this manner as θ̂h,BC :

θ̂h,BC = θ̂h,LS +
1

T − h

h∑
j=1

(
1 + tr

{
Σ̂−1
c,0Σ̂c,j

})
θ̂h−j,LS , h = 1, . . . , H, (10)

where Σ̂c,j =
1

T − h− j

T−h∑
t=j+1

(ct−j − c̄)(ct − c̄)′ for j = 0, . . . , h and c̄ =
1

T − h

T−h∑
t=1

ct.

The initial condition is given by θ̂0,BC = θ̂0,LS . Alternatively, the researcher could use bias corrected

estimates of θh as plug-in estimators in the expression for the approximate bias. We implement this

bias corrected estimator by again setting θ̂0,BCC = θ̂0,LS and proceeding sequentially to construct:

θ̂h,BCC = θ̂h,LS +
1

T − h

h∑
j=1

(
1 + tr

{
Σ̂−1
c,0Σ̂c,j

})
θ̂h−j,BCC , h = 1, . . . H. (11)

If all θ̂j,LS have the same sign and tr
{
Σ̂−1
c,0Σ̂c,j

}
> −1 for all j = 0, . . . , h, then θ̂h,BCC will

be larger in magnitude than θ̂h,BC for all h > 1. Given tr
{
Σ̂−1
c,0Σ̂c,j

}
> −1, both θ̂h,BC and

θ̂h,BCC are positively weighted sums of θ̂j,LS for j = 0, . . . , h. Because of the recursive definition in

equation (11), the weights used to calculate θ̂h,BCC will be larger than those associated with θ̂h,BC ,

and so |θ̂h,BCC | > |θ̂h,BC | as long as all of the θ̂j,LS have the same sign. In general, θ̂h,BCC tends

to exhibit superior properties when compared to θ̂h,BC . Therefore, in our subsequent analysis, we

will focus on θ̂h,BCC .

Here, we analyze how well θ̂h,BCC performs in the context of our AR(1) example data generating

process. The left column of Figure 3 shows the Monte Carlo estimate Eθ̂h,BCC − θh, for different

values of ρ and T , as a function of h. The bias corrected estimator does not eliminate the bias

entirely, particularly for low T and large ρ. That said, it reduces the bias relative to the least-

squares estimator. For example, when ρ = 0.99 and T = 50, θ̂h,BCC still exhibits a bias of around

−0.3 for moderate h, while the corresponding bias of θ̂h,LS is around −0.6 (see Figure 2). So θ̂h,BCC

represents a substantial improvement.

(1998)). However, in an LP, researchers would need to use, for example, a block bootstrap or the bootstrap discussed

in Montiel Olea and Plagborg-Møller (2021). With sample sizes typically seen the literature that uses LPs, block

bootstrapping methods are likely to perform poorly.
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The right column of Figure 3 shows the MSE ratio of θ̂h,BCC relative to θ̂h,LS . A number larger

than unity indicates that the MSE of θ̂h,BCC is larger than the MSE of θ̂h,LS . While θ̂h,BCC does

a better job, on average, of correcting for the bias when ρ is smaller, the relative MSE is smaller

for a larger ρ. Intuitively, when ρ is large, the bias of the LP estimator is also large, and the mean

bias correction is enough to reduce the MSE, even though the bias-correction procedure introduces

volatility into the estimator. Overall, the MSE metric does not uniformly favor either θ̂h,LS or

θ̂h,BCC .

It ought to be mentioned that the potential for asymptotic bias from parametric models may be

a key reason that many investigators turn to LPs in the first place. It stands to reason that these

researchers may have preferences that give more weight to the bias reduction than to lower-variance

estimators. Thus θ̂BCC , which reduces the finite sample component of this bias, may be attractive

even if it exhibits a higher variance (and higher MSE) than its least-squares counterpart.

4 Extension to panel data

Here, we extend our analysis to the setting of panel data with a fixed number of entities, I. We let

the subscript i indicate data for a particular panelist (for example, yi,t). We consider the setting

where the entities have common slope coefficients but entity-specific intercepts, which is a common

set-up in the LP literature using panel data. That is,

yi,t+h = αi,h + [εi,t, c
′
i,t−1, c

′
t−1]βh + ui,h,t. (12)

The vector ct−1 is included to accommodate common regressors. We set up the estimation problem

as stacked least squares, which is, by a large margin, the most frequently adopted approach in the

LP literature that uses panel data. We refer to the estimator of the impulse response function at

horizon h as θ̂h,LS,I .

4.1 The approximate bias of the least-squares estimator with panel data

To fix notation, let

xi,t =
[
1 (i = 1) , 1 (i = 2) , . . . , 1 (i = I) , εi,t, c

′
i,t−1, c

′
t−1

]′
, (13)

wt =
[
ε1,t, ε2,t, . . . , εI,t, c

′
1,t, c

′
2,t, . . . , c

′
I,t, c

′
t

]′
. (14)

Here, 1(i = n) denotes the indicator function, which takes the value 1 if the condition i = n is met

and 0 otherwise. We make the following assumption, which is analogous to Assumption 1.
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Assumption 3. The series wt is strictly stationary and ergodic. The series has a purely nonde-

terministic Wold representation with innovations ωt = [ε1,t, ε2,t, . . . , εI,t, ν
′
t]
′. Additionally, for all

i,

• εi,t is independent of εk,t+j for all j ̸= 0 and all k.

• εi,t is independent of νt+j for all j.

• E
[∑I

i=1 xi,tx
′
i,t

]
is invertible, and E

[
||
∑I

i=1 xi,tx
′
i,t||2

]
is finite.

Our assumptions about εi,t are meant to formalize what we mean by a structural shock.11

Additionally, as was the case without panel data, the linearity of wt facilitates the derivation of

analytic expressions for the approximate bias. One consideration that is specific to panel data is

the way that εj,t affects yi,t+h. We make the following related assumption, which is analogous to

Assumption 2.

Assumption 4. For every i, the regression error ui,h,t is independent of εk,t−j and νt−j−1 for all

k and j ≥ 0.

This assumption formalizes what we mean by conditioning inference on information available

at time t − 1 by including ci,t−1 and ct−1 in the LP. Additionally, Assumption 4 requires that if

εj,t affectes yi,t+h, it only does so through correlation with εi,t. In Appendix A.3, we derive the

following analytic result.

Analytical Result 3 (Bias in panel LPs with controls.). Under Assumptions 3-4, the approximate

bias of θ̂h,LS,I is given by

E
[
θ̂h,LS,I

]
− θh = Bh,LP,I +O

(
T−3/2

)
, (15)

where

Bh,LP,I = − 1

T − h

h∑
j=1

[1 + ϑj ] θh−j and ϑj =
1

I2

I∑
i=1

I∑
k=1

tr
{
Σ−1
c,0,IΣc,j,k,i

}
σε,i,k

σ2ε,I
. (16)

Here, σ2ε,I = 1
I

∑I
i=1 σε,i,i, σε,i,k = E[εi,tεk,t], Σc,0,I = 1

I

∑I
i=1Σc,0,i,i, Σc,j,i,k = E[c̃i,t−j c̃

′
k,t], and

c̃i,t = [c′i,t, c
′
t]
′. Additionally, B0,LP,I = 0.

11Setting εi,t = εt will accommodate a researcher who wants to investigate the response of yi,t+h to a structural

shock that is common to all panelists. In our notation, νt potentially contains shocks that are panelist specific.
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A few comments are in order regarding equation (16). First, as was the case without panel

data—and because the LS estimator is consistent—the approximate bias goes to zero as the sample

size goes to infinity. Second, the cross-autocovariance of the control variables plays a role in the

approximate bias. Third, as was the case without panel data, if the IRF of interest is persistent

and the controls are positively autocorrelated, the bias is larger. Fourth, even with controls that

are independent across entities or over time, the bias does not go to zero as the number of panelists

increases, holding T fixed—similar to the well-known bias discussed in Nickell (1981).

It is instructive to consider the implications of estimating the αi,h’s. In Appendix A.3, we show

that the contribution to Bh,LP,I from estimating the αi,h’s is given by

− 1

T − h

T−h∑
j=1

θh−j . (17)

As a result, if the αi,h’s (means of the data) are known, increasing the number of panelists, I, can

make Bh,LP,I smaller, provided that the correlations with existing panelists (reflected in ϑj) are

not too strong.

4.2 An AR(1) example with panel data

Here, we examine the approximate bias in panel LPs using independent AR(1) data generating

processes for yi,t. In particular, we assume that

yi,t = αi + θ0εi,t + ρyi,t−1 + νi,t with εi,t
iid∼ N(0, σ2ε) and νi,t

iid∼ N(0, σ2ν). (18)

Note that the independence of the innovations is in both the cross-section and time dimensions.

Thus, yi,t is independent across i. Further, we assume that ρ ∈ (0, 1). The researcher observes

{(yi,t, εi,t)}Tt=1 for i = 1, 2, . . . , I and estimates the impulse response of yi,t+h to εi,t for h = 0, . . . , H

using the LP defined in equation (12) with ci,t−1 = yi,t−1 and ct−1 = ∅. This example satisfies

Assumptions 3 and 4.

4.2.1 Explicit approximate bias with panel data

Noting that θh = θ0ρ
h, it is easy to see from Analytical Result 3 that the approximate bias of the

panel LP is given by

Bh,LP,I = − 1

T − h

h∑
j=1

(
1 +

1

I
ρj
)
θ0ρ

h−j = − θ0
T − h

(
1− ρh

1− ρ
+

1

I
hρh

)
. (19)
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Notice that the expression for Bh,LP,I in equation (19) is similar to the expression for Bh,LP in

equation (6), except that the second term in parentheses is divided by I. This result reflects

the common AR coefficient across yi,t and our assumption that yi,t is independent of yj,t for i ̸=

j. Equation (19) also illustrates that adding panelists with uncorrelated data can reduce the

approximate bias.12 At the same time, Bh,LP,I clearly does not approach zero as I increases. It

is worth noting that when ρ is near unity, the first term in parentheses in equation (19) will be

relatively large, and increasing I will have little effect on the approximate bias.

4.2.2 Quality of the approximation with panel data

Here we analyze how well Bh,LP,I approximates the small-sample bias of θ̂h,LS,I . Figure 4 shows

Bh,LP,I along with the sample mean of a Monte Carlo exercise conducted using the data generating

process in equation (18).13 The figure shows results for different values of ρ and T and is constructed

under the assumption that I = 50. This choice of I is reasonably representative in the context

of the LP literature that uses panel data because many studies consider either state-level data or

country-level data for advanced economies. Because all of the values of ρ shown imply that the

data are persistent, the figure is very similar for smaller values of I.

Notably, Figure 4 is similar to Figure 2. As a result, we conclude that for empirically relevant

sample sizes, Bh,LP,I offers a reasonable approximation of the bias in LPs, though the quality of

the approximation is somewhat worse for smaller values of T and larger values of ρ. Additionally,

we conclude that for ρ near unity, adding a panel dimension to the LP does not materially reduce

small-sample bias.

4.3 A bias-corrected estimator with panel data

Analytical Result 3 lends itself to constructing bias-corrected estimators of θh using plug-in estima-

tors of θj and Σc,i,j . However, the number of cross-autocovariances that are required to construct

the values of Σc,i,j is large. Because the term of the approximate bias involving Σc,i,j is multiplied
12With correlation across panelists, increasing I may have less of an effect in reducing the bias. As an extreme

example, consider the case where εi,t = εj,t and νi,t = νj,t for all i and j. In this case, yi,t = yj,t for all i and j and

our expression for the approximate bias given by equation (16) collapses to the expression in equation (3). So, in this

case, the expression for the approximate bis in the panel regression is given by equation (6).
13For the Monte Carlo exercises, we set σε = σν = 1 and θ0 = 1.
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by I−1, in applications with reasonably large I, researchers could instead use

Bh,LP,I ≈ − 1

T − h

h∑
j=1

θh−j . (20)

While this expression is not an exact expression for the approximate bias to order O(T−1), it could

be used to improve upon the least-squares estimator by picking up some (or potentially most if the

cross-sectional dependence is not too large) of the approximate bias. We denote the estimator of

θh constructed in this way as θ̂h,BC,I . Alternatively, similar to the case without panel data, the

researcher could construct the approximate bias using bias-corrected estimates of θh. We denote

this estimator as θ̂h,BCC,I .

Here, we analyze how well θ̂h,BCC,I performs in the context of our AR(1) example data gen-

erating process from equation (18). The left column of Figure 5 shows the Monte Carlo average

of θ̂h,BCC,I − θh, for different values of ρ and T , as a function of h. Clearly, the bias-corrected

estimator performs better for smaller values of ρ and larger values of T .

The right column of Figure 5 shows the MSEs of θ̂h,BCC,I relative to the MSEs associated

with θ̂h,LS,I .14 Note that a number larger than unity indicates that the MSE of θ̂h,BCC,I is larger

than the MSE of θ̂h,LS,I . Notably, θ̂h,BCC,I leads to a smaller MSE than θ̂h,LS,I . Intuitively, the

reason is that the values θ̂h,LS,I have a normal asymptotic limiting distribution when multiplied by
√
TI, so in small samples this estimator has relatively little variance when used to construct the

approximate bias, which is of order O
(
T−1

)
. Of course, estimating the values of Σc,i,j to capture

the entire approximate bias would add additional variance.

5 Bias in the Context of a Medium-Scale Monetary Time Series

In this section, we conduct a Monte Carlo study using a larger time series model. To construct

an empirically realistic data generating process, we follow Christiano et al. (2005)—subsequently

referred to as CEE—and estimate a nine variable VAR(4). We focus on the dynamic effects of a

monetary policy shock, identified recursively like in CEE. Figure 6 shows the impulse responses of

real GDP, the price level, and the federal funds rate to a monetary policy shock. The estimated

VAR(4) serves as the data generating process for our Monte Carlo exercise.15

Our Monte Carlo study examines the properties of both the standard least-squares estimator

and our bias-corrected LP for estimating these three impulse responses. We assume that the
14Note that the MSE rankings in Figure 5 might differ if we introduced clustered dependence in the simulation
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econometrician observes sets of time series of length T of the dependent variable yt—either the

log level of real GDP, the log level of prices, or the federal funds rate—sets of controls ct, and the

monetary policy shock εt. In this section, we assume that the vector of controls is “full” in the sense

that it contains the four lags of all variables like in the VAR. Results under different assumptions

about the conditioning set are broadly similar and are available in Appendix E. The sample sizes

vary, as in the earlier simulations, with T ∈ {100, 200}. We simulate 2000 trajectories from the

VAR for each sample size T . Each simulation is initialized from a random point in the stationary

distribution.

Figure 7 displays Monte Carlo estimates of the bias of θ̂h,LS and θ̂h,BCC (the dashed and solid

lines in the left-hand column, respectively) and the MSE ratio (the right-hand column) for output,

the price level, and the federal funds. Focusing first on the bias, we see that all of the estimated

impulse responses exhibit bias, with the largest bias associated with the impulse response of real

GDP. As expected, the bias is decreasing in the sample size T , with the red lines (T = 200) generally

being closer to zero than the green lines (T = 100). Interestingly, unlike for the univariate AR(1)

example, this bias is not always—or even typically—downwards. In nearly all cases, the bias of

θ̂h,BCC is smaller in magnitude than the bias of θ̂h,LS , indicating that the bias correction works

well. But as with the univariate AR(1) example, the bias corrected estimator does not completely

eliminate the bias.

Turning to the relative MSE, which is displayed in the right-hand column of Figure 7, we see

that neither θ̂h,LS nor θ̂h,BCC is uniformly best. For example, for real GDP the MSE of θ̂h,BCC

is less than that of θ̂h,LS for h ∈ [4, 12], as the bias term dominates the MSE calculation at those

horizons. When the bias associated with θ̂h,LS is relatively small (which here is at small or large

h), this estimator is preferred in an MSE sense. For the price level the bias switches signs around

h ≈ 14, so for these horizons θ̂h,BCC has a relatively high MSE. Finally, for the federal funds rate

neither estimator dominates across all h. Overall, the MSE criterion does not definitively select

either θ̂h,LS or θ̂h,BCC as best.16

innovations.
15The inflation responses are computed ex post as the (annualized) percent change in the price level. Note also

that the VAR, at the maximum likelihood estimator, is stationary. The magnitudes of the five largest eigenvalues
are [0.99, 0.97, 0.97, 0.95, 0.95]. More details about the VAR are available in Appendix E.

16In the Appendix, we compare the LP estimators to those of VAR(1) and VAR(4) models.
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6 Some considerations related to standard errors

LPs are often used to construct confidence intervals for IRFs, which necessitates calculating stan-

dard errors that are a function of the asymptotic covariance matrix of the least-squares estimator

of the parameters in equation (1), which is given by

VT−h =

(
1

T − h

T−h∑
t=1

E [x̃tx̃t] ′

)−1

ST−h

(
1

T − h

T−h∑
t=1

E [x̃tx̃t] ′

)−1

(21)

where x̃ = [1, x′t]
′ and

ST−h =
1

T − h

T−h∑
t=1

T−h∑
s=1

E
[
x̃tx̃

′
suh,tuh,s

]
. (22)

The challenging piece of the standard-error calculation is estimating ST−h. Since Jordà (2005),

the conventional wisdom has been that HAR standard errors are necessary because the regression

residuals of LPs are autocorrelated. A popular choice of estimator of ST−h in the LP literature is

the estimator of Newey and West (1987). Because the NW estimator tends to understate sampling

uncertainty, work by Müller (2014), Sun (2014), and Lazarus et al. (2018) has suggested alternatives.

However, under Assumptions 1 and 2, the LP regression score—the product of the εt and the LP

regression residuals—is serially uncorrelated.17 Thus, in large samples the (heteroskedasticity-

robust) estimator of Huber (1967) and White (1980) (HW) is valid. Here, we consider the small

sample implications of using the NW estimator when HW will do.

Because we assume that εt is independent of ct−1, the only relevant element of ST−h in comput-

ing the standard error of θ̂h,LS is the diagonal element in the same position as θh, which is given

by

1

T − h

T−h∑
t=1

T−h∑
s=1

E
[
εt(yt+h − αh − x′tβh)εs(ys+h − αh − x′sβh)

]
=

1

T − h

T−h∑
t=1

T−h∑
s=1

γh,|t−s|. (23)

The NW estimator of this value with bandwidth m is given by

γ̂h,0 +
m∑
ℓ=1

(
1− ℓ

m+ 1

)
T − h− ℓ

T − h
2γ̂h,ℓ. (24)

where

γ̂h,ℓ =
1

T − h− ℓ

T−h∑
t=ℓ+1

εt(yt+h − αh − x′tβ̂h,LS)εt−ℓ(yt−ℓ+h − αh − x′t−ℓβ̂h,LS). (25)

17Montiel Olea and Plagborg-Møller (2021) use lag augmentation to achieve (population) residualized regressors,

whereas our setup does not require this step because we assume the researcher has access to εt.

18



Note that γ̂h,ℓ is the sample autocovariance of the regression score. Under Assumptions 1 and 2,

γh,ℓ = 0 for ℓ > 0. As a result, setting m > 0 is not asymptotically necessary to conduct valid

inference in our LP set-up. However, using the NW estimator may have implications for inference

in small samples because γ̂h,ℓ may have small-sample bias akin to the bias we have documented in

LP estimators of impulse response functions.

6.1 Explicit approximate bias of the autocovariance of the regression score

To investigate the small-sample implications of using the NW estimator when HW will do, we focus

attention on the case where θh = 0 for all h. We choose this setup for two reasons. First, the null

hypothesis that θh = 0 is often of interest to researchers using LPs, and our derivation would be

correct under that hypothesis. Second, the assumption that θh = 0 facilitates the derivation of

expressions of the approximate bias in γ̂h,ℓ. In Appendix D we show that, under suitable regularity

conditions, when αh, βh, and γh,ℓ are jointly estimated

Eγ̂h,ℓ − γh,ℓ = − 1

T − h− ℓ
γh,0 +O

(
T−3/2

)
. (26)

It is immediately clear that increasing m in the NW estimator is likely to decrease the value of the

element of ŜT−h that is relevant to constructing the standard errors of the least-squares estimator

in our LP setting, which reduces the size of the standard error.18

6.2 Bias in standard errors in the context of an AR(1) example

To explore the small sample bias of standard errors of LPs, we again use the AR(1) data generating

process in equation (5) for Monte Carlo simulations. We consider two specifications. In the first

specification, we assume that θ0 = 0, σ2ε = 1, and σ2ν = 2. This specification conforms to our

assumption in the previous subsection that θh = 0 for all h. In the second specification, we assume

that θ0 = 1, σ2ε = 1, and σ2ν = 1. This specification has θh ̸= 0 for all h, but maintains the same

variance of yt as in the first specification. We set ct−1 = yt−1.19

18In Appendix D, we show that, for ℓ > 0, the approximate bias in γ̂h,ℓ is the same as in the case where αh is

known. Additionally, we derive the approximate bias in the case when controls are not included in the LP. The

expression of the approximate bias in terms of γ0,h is unchanged.
19We focus on HW and NW estimators and standard critical values not only because of their popularity in practice

but also because they can be used to isolate the effect of bias in the estimated regression-score autocovariances. In

fact, the errors here are homoskedastic, so heteroskedasticity-robust estimators are unnecessary.

19



We fix the horizon of the LP at h = 10 and estimate γ10,ℓ using the fitted regression scores

from the LPs.20 Figure 8 shows the Monte Carlo mean of γ̂10,ℓ for ℓ > 0 in each of the two

specifications. Several remarks are in order. First, when θh = 0, the Monte Carlo mean of γ̂10,ℓ is

roughly constant for all ℓ shown, as implied by the analytical expression of the approximate bias

derived in the previous subsection. Second, when θh > 0, the Monte Carlo mean of γ̂10,ℓ is also

negative and for some h is more negative than when θh = 0. Third, regardless of whether θh = 0

or θh > 0, the Monte Carlo mean of γ̂10,ℓ is more negative for smaller values of T or larger values

of ρ.

To analyze the effect of using estimates of the autocovariance of the regression score to construct

standard errors, we consider coverage probabilities from symmetric 95% confidence intervals con-

structed using the method of HW and NW. We also consider the equally-weighted cosine (EWC)

estimator discussed in Lazarus et al. (2018), a frequency-domain-based alternative standard error

estimator.21 Figure 9 displays the coverage probabilities for both θ̂LS (the left-hand column) and

θ̂BCC (the right-hand column) of confidence intervals constructed using the three standard error

estimates, with the rows corresponding to different values of ρ. For all ρ and T , the frequency-

domain-based EWC delivers the best coverage, except perhaps at h = 0. The NW-based confidence

interval uniformly provides the worst coverage, but only by a small amount. Finally, the confidence

intervals using θ̂BCC provide better coverage than those using θ̂LS regardless of the standard errors

used. Overall, our results show the favorable performance of θ̂BCC and the poor performance of

NW. While the EWC-based intervals are clearly superior, in practice some users may continue to

prefer the conventional time-domain-based estimators, in which case they should use HW.

6.3 Medium-scale model revisited

To extend our analysis of standard errors to a medium-scale time series model, Figure 10 displays

the same coverage probabilities shown for the AR(1) but for the CEE VAR variables for real GDP

(top), the price level (middle) and the federal funds rate (bottom) for T = 100. Once again, the
20In Appendix D, we derive the bias under the assumption that αh, βh, and γh,ℓ are estimated as a part of the same

generalized method of moments system. As a result, those derivations work with only T − h − ℓ observations. For

our Monte Carlo exercises in this sub-section, we instead calculate γ̂h,ℓ using the T −h values of the fitted regression

score. So, αh and βh are estimated using T − h observations for every ℓ.
21For EWC we use a bandwidth ≈ 0.41T 2/3. One can also use the critical values for the NW estimator under

fixed-b asymptotics with appropriately choosing the bandwidth (≈ 1.3
√
T − h). We found this performed poorly, and

so therefore we omit it from the presentation.
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EWC-based confidence intervals perform the best, with the NW-based ones performing the worst.

The HW-based intervals always perform better than the NW ones, suggesting again that among

time-domain based estimators of standard errors, they have the best finite sample performance.

The coverage for the price level is particularly poor for large h. Finally, θ̂h,BCC-based intervals are

not uniformly better (or worse) than θ̂h,LS-based ones.

7 Conclusion

We have shown that LPs can be severely biased in sample sizes commonly found in the related

literature. Our analytical expressions of the approximate bias have shown that LPs are intimately

linked across horizons in small samples. We have also shown how researchers could use our expres-

sion of the approximate bias to correct for bias in LPs. When correcting for bias, researchers face a

small-sample tradeoff between bias and MSE. Using Monte Carlo analysis, we have demonstrated

that the performance of our bias-corrected estimator depends on the underlying data generating

process and on the LP horizon of interest.

In our Monte Carlo examples, our bias correction does not completely correct for the bias in

LPs. These results suggest that other time series models with well-understood and effective meth-

ods for bias correction (such as VARs) might be better alternatives to estimate impulse responses

if researchers have data samples in the time dimension that are similar to those typically found in

empirical macroeconomic research. In particular, specifying time series models that are generative

for the time series of interest would allow researchers to use likelihood methods. We leave explo-

ration of these ideas, as well as the bias of LP estimators with heteroskedastic shocks, to future

research.

We have also analyzed bias in standard errors computed for estimated impulse response func-

tions from LPs. In small samples, standard errors that rely on estimated autocovariances of the

regression score, like the NW estimator, typically understate the amount of uncertainty surrounding

the estimated impulse response functions. Recent work on standard errors in time series regres-

sion has focused on limiting distributions other than the normal distribution (see Sun (2014) and

Lazarus et al. (2018)). However, with samples typically found in the LP literature, limiting distri-

butions are not accurate approximations. As a result, if researchers are going to use NW standard

errors, they may want to check to see if HW or fixed-b standard errors would lead to different

conclusions. If the HW standard errors are larger than the NW standard errors, researchers should
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consider what might lead to the apparent negative autocovariance in the regression score. Without

another reasonable theory, a plausible explanation might be that the negative estimates of the

autocovariance of the regression score are the result of small-sample bias.
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Figure 2: Bh,LP performs well in empirically-relevant samples when yt is an AR(1).
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(b) ρ = 0.95
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(c) ρ = 0.99
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Note: the sub-figures show the value of Bh,LP and the Monte Carlo means of θ̂h,LS − θh estimated on data simulated
from equation (5). We use 1,000,000 Monte Carlo simulations. We set σε = σν = 1 and θ0 = 1.

25



Figure 3: Performance of Bh,BCC in an AR(1) example.

(a) ρ = 0.90, Eθ̂h,BCC − θh
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(b) ρ = 0.90, MSE of θ̂h,BCC relative to θ̂h,LS
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(c) ρ = 0.95, Eθ̂h,BCC − θh
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(d) ρ = 0.95, MSE of θ̂h,BCC relative to θ̂h,LS
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(e) ρ = 0.99, Eθ̂h,BCC − θh
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(f) ρ = 0.99, MSE of θ̂h,BCC relative to θ̂h,LS
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Note: the sub-figures on the left show the Monte Carlo means of θ̂h,BCC − θh estimated on data simulated from
equation (5). The sub-figures on the right show the Monte Carlo value of the MSE of θ̂h,BCC relative to the MSE of
θ̂h,LS . A number larger than unity indicates that the MSE of θ̂h,BCC is larger than θ̂h,LS . We use 1,000,000 Monte
Carlo simulations. We set σε = σν = 1 and θ0 = 1.
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Figure 4: Bh,LP,I performs well in empirically-relevant samples when yi,t is an AR(1) and I = 50.

(a) ρ = 0.90
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(b) ρ = 0.95
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(c) ρ = 0.99
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Note: the sub-figures show the value of Bh,LP,I and the Monte Carlo means of θ̂h,LS,I−θh estimated on data simulated
from equation (18). We use 1,000,000 Monte Carlo simulations. We set σε = σν = 1 and θ0 = 1.
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Figure 5: Performance of Bh,BCC,I in an AR(1) example.

(a) ρ = 0.90, Eθ̂h,BCC,I − θh
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(b) ρ = 0.90, MSE of θ̂h,BCC,I relative to θ̂h,LS,I
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(c) ρ = 0.95, Eθ̂h,BCC,I − θh
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(d) ρ = 0.95, MSE of θ̂h,BCC,I relative to θ̂h,LS,I
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(e) ρ = 0.99, Eθ̂h,BCC,I − θh
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(f) ρ = 0.99, MSE of θ̂h,BCC,I relative to θ̂h,LS,I
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Note: the sub-figures on the left show the Monte Carlo means of θ̂h,BCC,I − θh estimated on data simulated from
equation (18). The sub-figures on the right show the Monte Carlo value of the MSE of θ̂h,BCC,I relative to the MSE
of θ̂h,LS,I . A number larger than unity indicates that the MSE of θ̂h,BCC,I is larger than θ̂h,LS,I . We use 1,000,000
Monte Carlo simulations. We set σε = σν = 1 and θ0 = 1.
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Figure 6: Impulse Response to Monetary Policy Shock in a CEE-style VAR
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Note: The figure displays impulse response of output (in percent), the price level (in percent), and the federal funds
rate (in percentage points) to a one standard deviation increase in the monetary policy shock (identified recursively
via the Cholesky factorization). The solid lines display the median impulse responses and the dashed lines 90 percent
confidence intervals computed using the method of Sims and Zha (1999).
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Figure 7: Bias and MSE under a CEE-type VAR Data Generating Process
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(c) Eθ̂h,LS − θh (dashed) and Eθ̂h,BCC − θh (solid)
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(e) Eθ̂h,LS − θh (dashed) and Eθ̂h,BCC − θh (solid)
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(f) MSE of θ̂h,BCC relative to θ̂h,LS
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Note: the sub-figures in the left column show the Monte Carlo means of θ̂h,LS − θh (dashed lines) and θ̂h,BCC − θh
(solid lines) for T = 100 (red) and T = 200 (green). The sub-figures in the right column show the ratio of the MSE
of θ̂h,BCC relative to θ̂h,LS for T = 100 (red) and T = 200 (green).
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Figure 8: γ̂10,ℓ is biased down in small samples when yt is an AR(1).

(a) ρ = 0.90, θh = 0
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(b) ρ = 0.90, θh = ρh
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(c) ρ = 0.95, θh = 0
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(d) ρ = 0.95, θh = ρh
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(e) ρ = 0.99, θh = 0
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(f) ρ = 0.99, θh = ρh
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Note: the sub-figures on the left show the Monte Carlo means of γ̂10,ℓ estimated on data simulated from equation (5)
when θ0 = 0. The sub-figures on the right show analogous figures when θ0 = 1. When θ0 = 1, we set σε = σν = 1.
When θ0 = 0, we increase σν so that the variance of yt is unchanged. We use 1,000,000 Monte Carlo simulations.
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Figure 9: Empirical Coverage of 95% Confidence Intervals

(a) ρ = 0.90, T = 100, Coverage of θ̂LS
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(b) ρ = 0.90, T = 100, Coverage of θ̂BCC
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(c) ρ = 0.95, T = 100, Coverage of θ̂LS
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(d) ρ = 0.95, T = 100, Coverage of θ̂BCC
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(e) ρ = 0.99, T = 100, Coverage of θ̂LS
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(f) ρ = 0.99, T = 100, Coverage of θ̂BCC
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Note: the sub-figures on the left show the empirical coverage of symmetric 95% confidence intervals constructed using
HW (green), NW (orange), and EWC (purple) based standard errors for θ̂LS and θ̂BCC .
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Figure 10: Coverage of 95% Confidence Intervals under a CEE-type VAR DGP
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(b) Coverage of θ̂h,BCC
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(c) Coverage of θ̂h,LS
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(d) Coverage of θ̂h,BCC
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(e) Coverage of θ̂h,LS
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(f) Coverage of θ̂h,BCC

0 2 4 6 8 10 12 14 16 18 20
h

0.5

0.6

0.7

0.8

0.9

1.0

HWNW
EWC

Note: the sub-figures on the left show the empirical coverage of symmetric 95% confidence intervals constructed using
HW (green), NW (orange), and EWC (purple) based standard errors for θ̂LS and θ̂BCC for T = 100.
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Appendix for “Bias in Local Projections”

A Derivations of approximate bias

In this Appendix, we derive our expressions for the approximate bias of the LP estimators studied

in our paper. To do so, we employ the framework proposed by Rilstone et al. (1996) and extended

to time series models by Bao and Ullah (2007). These papers derive expressions for finite-sample

moments for a wide class of estimators via an approximation of an estimator β̂ of the form:

β̂ − β = a−1/2 + a−1 +Op(T
−3/2). (A.1)

Assumption 1, combined with the least-squares estimation framework, fulfills the necessary as-

sumptions of Rilstone et al. (1996). Meanwhile, Assumption 2 facilitates the derivation of tractable

expressions for the approximate bias.

In this Appendix, we use the notation of Bao and Ullah (2007) where possible. For each

derivation, we will cast the least-squares estimator as a generalized method of moments (GMM)

estimator with moment conditions given by qh(β; ξt), where β = [αh, β
′
h]

′ and ξt = [yt+h, x
′
t]
′ is the

data vector for the LP model. The GMM empirical moments are given by

ψh,T−h(β; {ξt}T−h
t=1 ) =

1

T − h

T−h∑
t=1

qh(β; ξt). (A.2)

Let ▽iA(β) be the matrix of ith order partial derivatives of A with respect to β. In what follows,

we abbreviate ψh,T−h(β; {ξt}T−h
t=1 ) as ψh,T−h and qh(β; ξt) as qh,t. We also introduce the series of

matrices

Hi = ▽iψh,T−h and H i = E [Hi] with Q = H
−1
1 , V = H1 −H1. (A.3)

Bao and Ullah (2007) show that the expressions for the terms in (A.1) are given by:

a−1/2 = −Qψh,T−h and a−1 = −QV a−1/2 −
1

2
QH2

[
a−1/2 ⊗ a−1/2

]
. (A.4)

We are interested in computing

B = E[a−1/2 + a−1] = E [QV Qψh,T−h]− E
[
1

2
QH2 [(Qψh,T−h)⊗ (Qψh,T−h)]

]
, (A.5)

1



which we refer to as the approximate bias. Throughout this Appendix, and without loss of gen-

erality, we assume all data have mean zero. Before proceeding, we introduce notation for second

moments of the data

σ2ε = E
[
ε2t
]
, σ2y = E

[
y2t
]
, Σc,j = E

[
ct−jc

′
t

]
. (A.6)

A.1 LP when means are estimated

In the LP model when means are estimated, the moment conditions for the least-squares estimator

are

E

 yt+h − αh − x′tβh

xt (yt+h − αh − x′tβh)

 = 0. (A.7)

Because, in the notation of Bao and Ullah (2007), H2 = 0, to calculate Bh,LP we only need to

calculate the second element of E [QH1Qψh,T−h], which is given by

E [QH1Qψh,T−h]2 = − 1

(T − h)2

T−h∑
t=1

T−h∑
s=1

E [ϕ1(t, s) + ϕ2(t, s) + ϕ3(t, s)] , (A.8)

where

ϕ1(t, s) =
εt
σ2ε

(
ys+h − αh − x′sβh

)
, (A.9)

ϕ2(t, s) =

(
εt
σ2ε

)2

εs
(
ys+h − αh − x′sβh

)
, (A.10)

ϕ3(t, s) =
εt
σ2ε
c′t−1Σ

−1
c,0cs−1

(
ys+h − αh − x′sβh

)
. (A.11)

Consider first E[ϕ1(t, s)]. When t ≤ s this expectation equals zero by Assumption 2. When t > s+h

this expectation is zero by Assumption 1. Finally, when s < t ≤ s+h, then direct calculation yields

E[ϕ1(t, s)] = θs+h−t. Next consider E[ϕ2(t, s)]. If t = s, then under Assumption 2, this expectation

is zero. If t ̸= s, then the expectation is again zero owing to Assumptions 1 and 2. Finally, consider

E[ϕ3(t, s)]. When t > s+ h, or t ≤ s E [ϕ3(t, s)] = 0 by Assumptions 1 and 2. When s < t ≤ s+ h

E [ϕ3(t, s)] =E
[
εt
σ2ε
c′t−1Σ

−1
c,0cs−1

(
uh−(t−s),t + x′tβh−(t−s) − x′sβh

)]
(A.12)

=E
[
εt
σ2ε
c′t−1Σ

−1
c,0cs−1

(
ut,h−(t−s) + x′tβh−(t−s)

)]
(A.13)

=E
[
εt
σ2ε
c′t−1Σ

−1
c,0cs−1

(
x′tβh−(t−s)

)]
(A.14)

=E
[
1

σ2ε
Et−1

[
εt
(
x′tβh−(t−s)

)]
tr
{
c′t−1Σ

−1
c,0cs−1

}]
(A.15)

=θh−(t−s)tr
{
Σ−1
c,0Σc,t−s

}
. (A.16)
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Note that equation (A.12) follows from the definition of uh,t, equation (A.13) follows from As-

sumption 1, equation (A.14) follows from Assumption 2, equation (A.15) follows from the law of

iterated expectations, and equation (A.16) follows from Assumption 1. Combining these resulting

gives expression for Bh,LP given in equation (3).

It is instructive to understand the effect of estimating αh. To do so, we assume the mean is

known—so that the intercepts of the regressions αh are known—and compare the bias of the LP

estimator to our benchmark specification. The moment conditions for the LP are

E
[
xt
(
yt+h − x′tβh

)]
= 0 (A.17)

We are interested in the first element of βh. Similar calculation to the case when αh is estimated

yields

E[θ̂h,LS − θh] = E
1

(T − h)2

T−h∑
t=1

T−h∑
s=1

[ϕ2(t, s) + ϕ3(t, s)] +O(T−3/2), (A.18)

where ϕ2 and ϕ3 are define in A.10 and A.11. It is immediate that the contribution to Bh,LP from

estimating the mean is given by

− 1

T − h

T−h∑
j=1

θh−j . (A.19)

Additionally, the approximate bias takes the form

Bh,LP = − 1

T − h

h∑
j=1

tr
{
Σ−1
c,0Σc,j

}
θh−j for h > 0, (A.20)

A.2 LP with no controls

It is not necessary to include controls in equation (1) to have a consistent estimator of θh, and a

sub-set of the related LP literature does not include contorls. In this sub-section, we derive the

approximate bias when controls are not included.

To do this, we maintain Assumption 1, but drop Assumption 2, and set ct−1 to the empty

vector. We assume that the following moment conditions hold

E

 yt+h − αh − θhεt

εt(yt+h − αh − θhεt)

 = 0. (A.21)

To get an expression for the approximate bias, the arguments in A.1 go through under the obvious

modifications. The resulting approximate bias is

− 1

(T − h)2

T−h∑
t=1

T−h∑
s=1

E [ϕ1(t, s) + ϕ2(t, s)] , (A.22)

3



where ϕ3(t, s) does not appear because no controls are included.

Consider first E[ϕ1(t, s)]. When t > s + h this expectation is zero by Assumption 1. When

t = s, this expectation is zero by the moment condition. When s < t ≤ s + h or t < s, direct

calculation yields E[ϕ1(t, s)] = θs+h−t. Next consider E[ϕ2(t, s)], which is zero. We can now state

the approximate bias for the case without controls

Analytical Result 4 (Bias in LPs without controls.). Under Assumption 1 and under the as-

sumption that equation A.21 holds, the approximate bias of the least-squares estimator of θh

− 1

T − h

T−h−1∑
j=1

(
1− j

T − h

)
(θh+j + θh−j) . (A.23)

A few comments are in order. First, the approximate bias is a function of the impulse response at

all horizons up to T−h−1. Relative to the case with controls, this means that the impulse response

at many more horizons, including those beyond the horizon of interest, affect the approximate bias.

Second, it is not feasible to estimate all of the terms that enter the expression for the approximate

bias with a finite sample. Any attempt to bias correct would need to truncate j. Third, it is

not the case that the approximate bias without controls is necessarily smaller or larger than the

approximate bias with controls. Instead, the magnitude of the bias depends on the particular

regression models.

It is instructive to understand the effect of estimating αh. To do this, we assume that the means

of the data (and thus αh) are known. For the LS estimator, we assume that the following moment

condition holds

E
[
εt(yt+h − θhεt)

]
= 0. (A.24)

The approximate bias is

− 1

(T − h)2

T−h∑
t=1

T−h∑
s=1

E [ϕ2(t, s)] , (A.25)

where ϕ2 is defined in equation (A.10). Note that ϕ1(t, s) does not appear in this expression because

the means are known, and ϕ3(t, s) does not appear because no controls are included. It is immediate

that from the arguments in the previous sub-section that when controls are not included, all of the

approximate bias is due to estimating the mean.
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A.3 LP with panel data

In this Appendix, we use the notation defined in Section 4. The moment conditions for the estimator

are

0 = E
[
1

I

∑I
i=1 xi,t

(
yi,t+h − x′i,tβh

) ]
. (A.26)

Applying the results of Bao and Ullah (2007), the approximate bias of θ̂h,LS,I is given by

− 1

(T − h)2

T−h∑
t=1

T−h∑
s=1

E [Φ1(t, s) + Φ2(t, s) + Φ3(t, s)] , (A.27)

where

Φ1(t, s) = E

[
1

I

I∑
i=1

εi,t
σ2ε,I

(
yi,s+h − x′i,sβh

)]
(A.28)

Φ2(t, s) = E

1
I

I∑
i=1

ε2i,t(
σ2ε,I

)2 1I
I∑

k=1

εk,s
(
yk,s+h − x′k,sβh

) (A.29)

Φ3(t, s) = E

[
1

I

I∑
i=1

εi,t
σ2ε,I

1

I

I∑
k=1

c̃′i,t−1Σ
−1
c,0,I c̃k,s−1

(
yk,s+h − x′k,sβh

)]
(A.30)

Consider Φ1(t, s). Under Assumptions 3 and 4, Φ1(t, s) = 0 when t ≤ s or t > s+h. If s < t ≤ s+h,

Φ1(t, s) = θs+h−t. Consider Φ2(t, s). Under Assumptions 3 and 4, Φ2(t, s) = 0 for all t and

s. Consider Φ3(t, s). Under Assumptions 3 and 4, Φ3(t, s) = 0 if t ≤ s or t > s + h. When

s < t ≤ s+ h

Φ3(t, s) = E

[
1

I

I∑
i=1

εi,t
σ2ε,I

1

I

I∑
k=1

c̃′i,t−1Σ
−1
c,0,I c̃k,s−1

(
uk,h−(t−s),t + x′k,tβh−(t−s)

)]
(A.31)

= E

[
1

I

I∑
i=1

εi,t
σ2ε,I

1

I

I∑
k=1

c̃′i,t−1Σ
−1
c,0,I c̃k,s−1x

′
k,tβh−(t−s)

]
(A.32)

= E

[
1

I

I∑
i=1

1

σ2ε,I

1

I

I∑
k=1

Et−1

[
εi,tx

′
k,tβh−(t−s)

]
c̃′i,t−1Σ

−1
c,0,I c̃k,s−1

]
(A.33)

=
1

I

I∑
i=1

1

I

I∑
k=1

tr
{
Σ−1
c,0,IE

[
c̃k,s−1c̃

′
i,t−1

]} σε,i,k
σ2ε,I

θs+h−t. (A.34)

Note that A.31 follows from the definition of uk,h−(t−s),t and Assumption 3, A.32 follows from As-

sumption 4, A.33 follows from the law of iterated expectations, and A.34 follows from Assumptions

3 and 4. Combining these observations delivers the results reported in Analytic Result 3.
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It is instructive to understand the effect of estimating αi,h. In this case, the moment conditions

are

0 = E
[
1

I

∑I
i=1 [εi,t, c

′
i,t−1, c

′
t−1]

′
(
yi,t+h − x′i,tβh

) ]
, (A.35)

where the first I elements of βh are known. Algebra similar to the previous sub-section yields that

the approximate bias is given by

− 1

(T − h)2

T−h∑
t=1

T−h∑
s=1

E [Φ2(t, s) + Φ3(t, s)] , (A.36)

where Φ2(t, s) and Φ3(t, s) are as defined in equations (A.29) and (A.30). It is immediate that the

contribution to Bh,LP,I from estimating the mean is given by

− 1

T − h

T−h∑
j=1

θh−j . (A.37)

B Analytic comparison between LP and parametric model

Here, we provide details of the derivation of the bias in the AR estimator θ̂0ρ̂h discussed in Sec-

tion 3.2.3 and under the data generating process given in equation 5. To derive the bias, we work

with the following moment conditions

E


yt − α− εtθ0 − ρyt−1

εt (yt − α− εtθ0 − ρyt−1)

yt−1 (yt − α− εtθ0 − ρyt−1)

θh − θ0ρ
h

 = 0. (B.1)

Note that Assumptions 1 and 2 are satisfied. For notational ease, and without loss of generality we

assume that E[yt] = 0, meaning α = 0.

We proceed by calculating the two terms defined in equation (A.5). With appropriately defined

vectors and matrices analogous to those discussed in Appendix A, E [QV Qψh,T−1]4 is given by

(
1

T − 1

)2 T∑
t=2

T∑
s=2

E
[
−
(
ρh

σ2ε
εt +

θ0hρ
h−1

σ2y
yt−1

)(
1 +

εtεs
σ2ε

+
yt−1ys−1

σ2y

)
νs

]
. (B.2)

It can be shown that this quantity can be expressed as

E [QV Qψh,T−1]4 = − 1

T − 1
θ0hρ

h−1γ(1 + 3ρ) +O(T−3/2), (B.3)
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where γ = σ2
ν

σ2
ν+θ20σ

2
ε
. The second term in equation (A.5) is given by:

E
[
1

2
QH2 [(Qψh,T−h)⊗ (Qψh,T−h)]

]
4

=− 1

2
hρh−1

(
1

T − 1

)2 T∑
t=2

T∑
s=2

E
[
εs
σ2ε
νs
yt−1

σ2y
νt

]

− 1

2
hρh−1

(
1

T − 1

)2 T∑
t=2

T∑
s=2

E
[
εt
σ2ε
νt
ys−1

σ2y
νs

]

− 1

2
θ0h (h− 1) ρh−2

(
1

T − 1

)2 T∑
t=2

T∑
s=2

E
[
ys−1

σ2y
νs
yt−1

σ2y
νt

]
(B.4)

=− 1

2
θ0h (h− 1) ρh−2 1

T − 1
γ
(
1− ρ2

)
. (B.5)

Then

Bh,AR = − 1

T − 1
γθ0hρ

h−1

[
(1 + 3ρ)− 1

2
(h− 1)

(
1− ρ2

)
ρ−1

]
, (B.6)

which is the expression given in Section 3.2.3.

C Additional analysis in the context of simple data generating

processes

In section 3.2 we analyzed Bh,LP in the context of an AR(1) data generating process given by

equation (5). In this Appendix, we analyze the quality of the approximate bias when means are

known, different parameterizations of equation (5) and an AR(2) model that generates hump-shaped

impulse response functions.

C.1 The quality of the approximation in an AR(1) when the means are known

Here, we analyze the quality of the approximation to the bias in the context of the AR(1) data

generating process in equation (5) when the means are known, as derived in Appendix A.1. Under

this assumption, figure C.1 shows analogous results to those reported in figure 2.

As in the case when αh is estimated, for ρ = 0.9 and ρ = 0.95, our analytic expression is a

good approximation to the exact finite-sample bias in θ̂h,LS for all h shown. The quality of the

approximation improves somewhat as T increases. Clearly, when ρ = 0.99, our analytic expression is

not as good of an approximation as it is for smaller values of ρ. We conclude that when the means

are known and for empirically relevant sample sizes, our analytic expression offers a reasonable
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approximation to the bias in LPs, though the quality of the approximation is somewhat worse for

smaller values of T and larger values of ρ.

C.2 Alternative parameterizations of the AR(1) data generating process

In the main text, we assumed σε = σν = 1. Here, we consider different settings.

First, consider the case where σε = 1 and σν = 0.1. In this case, the structural shock εt explains

almost all of the variation in yt. Using this parameterization, figure C.2 shows analogous results

to those reported in figure 2. Note that the values of σε and σν do not appear in Bh,LP . So,

the line representing Bh,LP are identical in figures 2 and C.2. Additionally, it is apparent that

the Monte Carlo means of θ̂LS are also very similar when comparing figures 2 and C.2. Figure

C.3 shows analogous results to those reported in Figure 3. While the average bias correction (left

panels) is little changed by the change in σν , the performance of θ̂h,BCC improves relative to θ̂h,LS
as measured by MSE.

Next, consider the case where σε = 0.1 and σν = 1. In this case, the structural shock ε explains

almost none of the variation in yt. Using this parameterization, figure C.4 shows analogous results

to those reported in figure 2. Note that the values of σε and σν do not appear in Bh,LP . So, the

line representing Bh,LP are identical in figures 2 and C.4. Additionally, the Monte Carlo means of

θ̂LS are also similar when comparing figures 2 and C.4. Figure C.5 shows the performance of the

bias corrected estimator under this data generating process. The bias correction is again unaffected

by the relative sizes of σε and σν , but the MSE of θ̂BCC is worse, relative to θ̂LS , because the bias

term contributes little to the MSE.

C.3 An AR(2) example

Here, we analyze the performance of the approximation Bh,LP using a simple AR(2) model. We

specify the data generating process so that

yt = (ρ+ ψ)yt−1 − ψρyt−2 + θ0εt + νt (C.1)

where εt ∼ N(0, σ2ε), νt ∼ N(0, σ2ν), and each is independent of each other and over time. We set

ψ = 0.4 and θ0 = 1. For the values of ρ that we consider, this data generating process delivers hump-

shaped impulse response functions. This particular formulation of the AR(2) is useful because ρ

plays a similar role to the AR(1) in that it determines the persistence of yt. We consider different

values for ρ within each figure. The LP is specified so that xt = [εt, yt−1, yt−2]
′.
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As was the case for the AR(1), For ρ = 0.9 and ρ = 0.95, Bh,LP is a good approximation to

the exact finite-sample bias in θ̂h,LS for all h shown. The quality of the approximation improves

somewhat as T increases. Clearly, when ρ = 0.99, Bh,LP is not as good of an approximation as

it is for smaller values of ρ. Nevertheless, even with ρ = 0.99 and T = 50, Bh,LP captures salient

features of the finite-sample bias, including that it is growing in magnitude with h over the values

of h shown. We conclude that the quality of the approximation is somewhat worse for smaller

values of T and larger values of ρ.
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Figure C.1: The approximate bias performs well in empirically-relevant samples when yt is an

AR(1) and the means are known.

(a) ρ = 0.90
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(b) ρ = 0.95
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(c) ρ = 0.99
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Note: This figure is analogous to Figure 2, but the estimation is done under the assumption that the means of the
data are known. The sub-figures show the value of the approximate bias and the Monte Carlo means of θ̂h,LS − θh
estimated on data simulated from equation (5) under the assumption that αh is known. We use 100,000 Monte Carlo
simulations. We set σε = σν = 1 and θ0 = 1.
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Figure C.2: Bh,LP performs well in empirically-relevant samples when yt is an AR(1) and σν is

small.

(a) ρ = 0.90
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(b) ρ = 0.95
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(c) ρ = 0.99
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Note: This figure is analogous to Figure 2, but with σε = 1 and σν = 0.1 (and θ0 = 1). The sub-figures show the
value of Bh,LP and the Monte Carlo means of θ̂h,LS − θh estimated on data simulated from equation (5). We use
100,000 Monte Carlo simulations.
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Figure C.3: Performance of Bh,BCC in the AR(1) example when σν is small.

(a) ρ = 0.90, Eθ̂h,BCC − θh
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(b) ρ = 0.90, MSE of θ̂h,BCC relative to θ̂h,LS
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(c) ρ = 0.95, Eθ̂h,BCC − θh
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(d) ρ = 0.95, MSE of θ̂h,BCC relative to θ̂h,LS
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(e) ρ = 0.99, Eθ̂h,BCC − θh
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(f) ρ = 0.99, MSE of θ̂h,BCC relative to θ̂h,LS
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Note: This figure is analogous to Figure 3, but with σε = 1 and σν = 0.1 (and θ0 = 1). The sub-figures on the left
show the Monte Carlo means of θ̂h,BCC − θh estimated on data simulated from equation (5). The sub-figures on the
right show the Monte Carlo value of the MSE of θ̂h,BCC relative to the MSE of θ̂h,LS . A number larger than unity
indicates that the MSE of θ̂h,BCC is larger than θ̂h,LS . We use 100,000 Monte Carlo simulations.
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Figure C.4: Bh,LP performs well in empirically-relevant samples when yt is an AR(1) and σε is

small.

(a) ρ = 0.90
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(b) ρ = 0.95
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(c) ρ = 0.99
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Note: This figure is analogous to Figure 2, but with σε = 0.1 and σν = 1 (and θ0 = 1). The sub-figures show the
value of Bh,LP and the Monte Carlo means of θ̂h,LS − θh estimated on data simulated from equation (5). We use
100,000 Monte Carlo simulations.
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Figure C.5: Performance of Bh,BCC in the AR(1) example when σε is small.

(a) ρ = 0.90, Eθ̂h,BCC − θh
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(b) ρ = 0.90, MSE of θ̂h,BCC relative to θ̂h,LS
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(c) ρ = 0.95, Eθ̂h,BCC − θh
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(d) ρ = 0.95, MSE of θ̂h,BCC relative to θ̂h,LS
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(e) ρ = 0.99, Eθ̂h,BCC − θh
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(f) ρ = 0.99, MSE of θ̂h,BCC relative to θ̂h,LS
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Note: This figure is analogous to Figure 3, but with σε = 0.1 and σν = 1 (and θ0 = 1). The sub-figures on the left
show the Monte Carlo means of θ̂h,BCC − θh estimated on data simulated from equation (5). The sub-figures on the
right show the Monte Carlo value of the MSE of θ̂h,BCC relative to the MSE of θ̂h,LS . A number larger than unity
indicates that the MSE of θ̂h,BCC is larger than θ̂h,LS . We use 100,000 Monte Carlo simulations.
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Figure C.6: Bh,LP performs well in empirically-relevant samples when yt is an AR(2).

(a) ρ = 0.90
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(b) ρ = 0.95
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(c) ρ = 0.99
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Note: the sub-figures show the value of Bh,LP and the Monte Carlo means of θ̂LS estimated on data simulated from
equation (C.1). We use 100,000 Monte Carlo simulations. We set σε = σν = 1 and θ0 = 1.
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Figure C.7: Performance of Bh,BCC in an AR(2) example.

(a) ρ = 0.90, Eθ̂h,BCC − θh
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(b) ρ = 0.90, MSE of θ̂h,BCC relative to θ̂h,LS
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(d) ρ = 0.95, MSE of θ̂h,BCC relative to θ̂h,LS
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(f) ρ = 0.99, MSE of θ̂h,BCC relative to θ̂h,LS
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Note: the sub-figures on the left show the Monte Carlo means of θ̂h,BCC − θh estimated on data simulated from
equation (5). The sub-figures on the right show the Monte Carlo value of the MSE of θ̂h,BCC relative to the MSE
of θ̂h,LS . A number larger than unity indicates that the MSE of θ̂h,BCC is larger than θ̂h,LS . We use 100,000 Monte
Carlo simulations. We set σε = σν = 1 and θ0 = 1.
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D Derivations related to standard errors

Here, we provide details of the derivation of the bias in the GMM estimator of the autocovariance

of the regression score under the assumption that θh = 0 for all h. Our notation mirrors that of

Appendix A.

D.1 Derivations related to SEs in LP with controls

To derive the approximate bias in γ̂h,ℓ, in an LP with controls, we work with the following moment

conditions

E


yt+h − α− x′tβh

εt (yt+h − α− x′tβh)

ct−1 (yt+h − α− x′tβh)

εt (yt+h − α− x′tβh) εt−ℓ

(
yt−ℓ+h − α− x′t−ℓβh

)
− γh,ℓ

 = 0, (D.1)

where ℓ > 0. We maintain Assumptions 1 and 2 and assume that Assumptions A-C in Rilstone

et al. (1996) are satisfied. For notational ease, and without loss of generality, we assume that all

data have zero mean. Note that the GMM empirical moment function associated with equation

(D.1) will only have T − h− ℓ observations owing to the additional autocovariance term.

With appropriately defined vectors and matrices analogous to those discussed in Appendix A

that also are in the notation of Bao and Ullah (2007), the final element of E [QV Qψh,T−h−ℓ] is

given by (
1

T − h− ℓ

)2 T−h∑
t=1+ℓ

T−h∑
s=1+ℓ

E [Υ1(t, s) + Υ2(t, s) + Υ3(t, s) + Υ4(t, s)] , (D.2)

where

Υ1(t, s) = − [εt−ℓεtuh,t + εtεt−ℓuh,t−ℓ]uh,s, (D.3)

Υ2(t, s) = −
[
εtε

2
t−ℓuh,t + ε2t εt−ℓuh,t−ℓ

] εs
σ2ε
uh,s, (D.4)

Υ3(t, s) = −
[
c′t−ℓ−1εt−ℓεtuh,t + εtc

′
t−1εt−ℓuh,t−ℓ

]
Σ−1
c cs−1uh,s, (D.5)

Υ4(t, s) = −εtuh,tεs−ℓuh,s−ℓ + γh,ℓ. (D.6)

It can be shown that for all t and s, EΥ1(t, s) = 0, EΥ3(t, s) = 0, EΥ4(t, s) = 0. If t = s or t = s+ℓ,

then

EΥ2(t, s) = −σ2εE
[(
yt+h − αh − x′tβh

)2]
. (D.7)
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If t ̸= s and t ̸= s + ℓ, then EΥ2(t, s) = 0. So, the final element of E
[
Q
(
H1 −H1

)
Qψh,T−h−ℓ

]
is

given by

−2

(
1

T − h− ℓ

)
σ2εE

[(
yt+h − αh − x′tβh

)2]
+O

(
T−3/2

)
. (D.8)

Additionally, the final element of E
[
1
2QH2

[
a−1/2 ⊗ a−1/2

]]
is given by

−
(

1

T − h− ℓ

)2 T−h∑
t=1+ℓ

T−h∑
s=1+ℓ

E
[
εt
(
yt+h − αh − x′tβh

)
εs
(
ys+h − αh − x′sβh

)]
= −

(
1

T − h− ℓ

)
σ2εE

[(
ys+h − αh − x′sβh

)2] (D.9)

Noting that γh,0 = σ2εE
[
(ys+h − αh − x′sβh)

2
]
, the approximate bias of γ̂h,ℓ is

− 1

T − h− ℓ
γh,0. (D.10)

It is useful to parse the effect of estimating αh. If the means of the data are known (αh is

known), the moment conditions are

E


εt (yt+h − α− x′tβh)

ct−1 (yt+h − α− x′tβh)

εt (yt+h − α− x′tβh) εt−ℓ

(
yt−ℓ+h − α− x′t−ℓβh

)
− γh,ℓ

 = 0, (D.11)

where ℓ > 0. It can be shown that the final element of E
[
Q
(
H1 −H1

)
Qψh,T−h−ℓ

]
is given by(

1

T − h− ℓ

)2 T−h∑
t=1+ℓ

T−h∑
s=1+ℓ

E [Υ2(t, s) + Υ3(t, s) + Υ4(t, s)] , (D.12)

and that the final element of 1
2QH2

[
a−1/2 ⊗ a−1/2

]
is unchanged from the case when controls are

included. Because EΥ1(t, s) = 0 for all t and s, the approximate bias of γ̂h,ℓ is the same as in the

case when αh is estimated.

D.2 Derivations related to SEs in LP with no controls

Here, we consider the approximate bias of γ̂h,ℓ in an LP without controls. We maintain Assump-

tion 1 and assume that Assumptions A-C in Rilstone et al. (1996) are satisfied. The moment

conditions are the same as in the LP with controls, but with ct−1 = ∅. It can be shown thet the

final element of E
[
Q
(
H1 −H1

)
Qψh,T−h−ℓ

]
is given by(

1

T − h− ℓ

)2 T−h∑
t=1+ℓ

T−h∑
s=1+ℓ

E [Υ1(t, s) + Υ2(t, s) + Υ4(t, s)] , (D.13)
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and the final element of 1
2QH2

[
a−1/2 ⊗ a−1/2

]
is unchanged in form from when controls are in-

cluded. Because θh = 0, it is immediate that the approximate bias of γ̂h,ℓ is

− 1

T − h− ℓ
σ2εE

[
y2t
]
= − 1

T − h− ℓ
γh,0. (D.14)

Following similar arguments to those made in the case of controls, it is easily shown that the

approximate bias of γ̂h,ℓ is unchanged in the case without controls if αh is known.

E CEE VAR

Christiano et al. (2005) estimate a 9 variable VAR(4) using quarterly U.S. data on real GDP, real

consumption, real investment, GDP deflator prices, real wages, labor productivity, federal funds

rate, real profits, and the growth rate of M2. All variables except the federal funds rate and M2

growth rate enter the VAR in log levels.

E.1 Data Construction

Following Christiano et al. (2005), our sample begins in 1965Q3 and ends in 1995Q3. Details on the

variable construction are given below. Variable names from FRED (https://fred.stlouisfed.

org) are provided. In instances where the data has higher than quarterly frequency, we use quarterly

averages.

1. Real GDP. Take the level of real gross domestic product (FRED mnemonic GDPC1). The

VAR observable is constructed as:

Real GDPt = log (GDPC1t) .

Citation: U.S. Bureau of Economic Analysis, Real Gross Domestic Product [GDPC1], re-

trieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/

series/GDPC1.

2. Real Consumption. Take the level of real consumption (FRED mnemonic PCECC96). The

VAR observable is constructed as:

Real Consumptiont = log (PCECC96t) .

Citation: U.S. Bureau of Economic Analysis, Real Personal Consumption Expenditures

[PCECC96], retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.

stlouisfed.org/series/PCECC96.
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3. GDP Deflator Prices. Take the level of GDP deflator prices (FRED mnemonic GDPDEF).

The VAR observable is constructed as:

Price Levelt = log (GDPDEFt)) .

Citation: U.S. Bureau of Economic Analysis, Gross Domestic Product: Implicit Price

Deflator [GDPDEF], retrieved from FRED, Federal Reserve Bank of St. Louis; https:

//fred.stlouisfed.org/series/GDPDEF.

4. Real Investment. Take the level of real gross domestic private investment (FRED mnemonic

GPDIC1). The VAR observable is constructed as:

Real Investmentt = log (GPDIC1t) .

Citation: U.S. Bureau of Economic Analysis, Real Gross Private Domestic Investment

[GPDIC1], retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.

stlouisfed.org/series/GPDIC1.

5. Real Wages. Take hourly compensation for all employed persons (FRED mnemonic

COMPNFB), the level of the GDP deflator prices, and the average weekly hours worked (FRED

mnemonic PRS85006023). The VAR observable is constructed as:

Real Wagest = log

(
COMPNFBt

GDPDEFt × PRS85006023t

)
.

Citations: U.S. Bureau of Labor Statistics, Nonfarm Business Sector: Hourly Compen-

sation for All Workers [COMPNFB], retrieved from FRED, Federal Reserve Bank of St.

Louis; https://fred.stlouisfed.org/series/COMPNFB. U.S. Bureau of Labor Statistics,

Nonfarm Business Sector: Average Weekly Hours for All Workers [PRS85006023], retrieved

from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/

PRS85006023.

6. Labor Productivity. Take labor productivity (FRED mnemonic OPHNFB). The VAR ob-

servable is constructed as:

Labor Productivityt = log (OPHNFBt) .

Citation: U.S. Bureau of Labor Statistics, Nonfarm Business Sector: Labor Productivity

(Output per Hour) for All Workers [OPHNFB], retrieved from FRED, Federal Reserve Bank

of St. Louis; https://fred.stlouisfed.org/series/OPHNFB.
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7. Federal Funds Rate. Take the quarterly average of the monthly federal funds rate (FRED

mnemonic FEDFUNDS). The VAR observable is constructed as:

Federal Funds Ratet = FEDFUNDSt.

Citation: Board of Governors of the Federal Reserve System (US), Federal Funds Effective

Rate [FEDFUNDS], retrieved from FRED, Federal Reserve Bank of St. Louis; https://

fred.stlouisfed.org/series/FEDFUNDS.

8. Real Profits. Take corporate profits after tax (FRED mnemonic CP). The VAR observable

is constructed as:

Real Profitst = log

(
CPt

GDPDEFt

)
.

Citations: U.S. Bureau of Economic Analysis, Corporate Profits After Tax (without IVA

and CCAdj) [CP], retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.

stlouisfed.org/series/CP. U.S. Bureau of Economic Analysis, Gross Domestic Product:

Implicit Price Deflator [GDPDEF], retrieved from FRED, Federal Reserve Bank of St. Louis;

https://fred.stlouisfed.org/series/GDPDEF.

9. The growth rate of M2. Take the M2 monetary aggregate (FRED mnemonic M2). The

VAR observable is constructed as:

∆M2t = 100×
(
M2t −M2t−1

M2t−1

)
.

Citation: Board of Governors of the Federal Reserve System (US), M2 (DISCONTINUED)

[M2], retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.

org/series/M2.

E.2 Identification of the Monetary Policy Shock in the VAR

The structural shocks underpinning the VAR are identified using the Cholesky factorization of the

estimated covariance matrix of the one step ahead forecast errors. The observables enter the VAR in

the following order: real GDP, real consumption, real investment, GDP deflator prices, real wages,

labor productivity, federal funds rate, real profits, and the growth rate of M2. The monetary policy

shock is assumed to be the one associated with the federal funds “equation” (i.e., the 7th one).

The Cholesky identification scheme can thus be interpreted as a set of timing assumptions. The

monetary policy shock cannot contemporaneously affect GDP, consumption, investment, the price

level, wages, or labor productivity.
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E.3 Local Projections and VARs, Redux

Here we put finite sample issues in LPs in the context a VAR-type estimator. Unless, the estimated

VAR coincides with the data generating process, there will be an asymptotic bias and variance trade-

off between the LP and VAR. In this section, we gauge the extent of this issue in the context of

finite sample approximation for our data generating process. We compare the impulse response

estimator θ̂BCC as well as the estimators constructed by iterating the h = 0 impact estimate using

either an estimated VAR(1) or estimated VAR(4). We denote these estimates by θ̂V AR(1) and

θ̂V AR(4), respectively. The VAR(4) represents the idealized case where the specification coincides

with the data generating process. The VAR(1) stands in as a misspecified alternative that might

be attractive to an investigator for its parsimony.

The left column of figure E.1 displays Monte Carlo estimates of Eθ̂h,BCC − θh (solid lines),

Eθ̂h,V AR(1) − θh (dotted lines), and Eθ̂h,V AR(4) − θh (dash-dotted lines) for output, the price level,

and the federal funds (rows) for T = 100. The VAR(4), the dash-dotted lines, being correctly

specified, exhibits the least amount of bias in general. Note that while θ̂LS and the VAR(4) estimate

are both unbiased asymptotically in this setting, the finite sample bias associated with the (even

bias-corrected) LP estimator is substantially larger. While this is not a general statement–our

theoretical results confirm that this difference cannot be signed in even a simple AR(1) setting–it

is instructive that in empirically realistic settings this difference is sizable, as the LP bias and VAR

bias are generated by the statistical considerations. Thus, the common practice of ignoring issues

of finite sample bias in VARs may not be appropriate for LPs. The VAR(1), being misspecified,

exhibits bias coming from both finite sample and asymptotic considerations. For real GDP and the

price level, the bias associated with the VAR(1) is substantial, sometimes much worse than even

the non-corrected LP (not shown), as their responses display more complex dynamics.

The right column of Figure E.1 displays the MSE ratios of θ̂BCC and θ̂V AR(1) relative to the

θ̂V AR(4) for T = 100. The VAR(1) exhibits lower MSE than θ̂BCC for essentially all variables and

horizons—indeed, it is typically preferred to the (correctly specified) VAR(4) estimator owing to

finite sample considerations. One way to interpret this result ,in the context of increasing popularity

of LPs, is that investigators may care more about the bias than the variance of estimators–otherwise,

we would see much use of misspecified VARs.

E.4 Additional Results
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Figure E.1: Bias and MSE of θ̂BCC compared to VAR-based estimates under a CEE-type VAR

Data Generating Process

Real GDP

(a) Eθ̂h,BCC − θh (solid), Eθ̂h,V AR(1) − θh (dotted)

and Eθ̂h,V AR(4) − θh (dash-dotted)
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(c) Eθ̂h,BCC − θh (solid), Eθ̂h,V AR(1) − θh (dotted)

and Eθ̂h,V AR(4) − θh (dash-dotted)
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(d) MSE of θ̂h,BCC relative to θ̂h,V AR(4) (solid)

and θ̂h,V AR(1) relative to θ̂h,V AR(4) (dotted)
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(e) Eθ̂h,BCC − θh (solid), Eθ̂h,V AR(1) − θh (dotted)

and Eθ̂h,V AR(4) − θh (dash-dotted)
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(f) MSE of θ̂h,BCC relative to θ̂h,V AR(4) (solid)

and θ̂h,V AR(1) relative to θ̂h,V AR(4) (dotted)
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Note: the sub-figures show Monte Carlo means of θ̂h,BCC − θh (solid lines), θ̂h,V AR(1) − θh (dotted lines) and
θ̂h,V AR(4) − θh (dash-dotted lines) for T = 100. The sub-figures on the show the ratio of the MSEs of θ̂h,BCC relative
to θ̂h,V AR(4) (solid lines) and for θ̂h,V AR(1) relative to θ̂h,V AR(4) (dotted lines) for T = 100. We use 2,000 Monte
Carlo simulations. 23



Figure E.2: Bias and MSE under a CEE-type VAR DGP (No controls)
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(c) Eθ̂h,LS − θh (dashed) and Eθ̂h,BCC − θh (solid)
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Note: the sub-figures in the left column show the Eθ̂h,LS−θh (dashed lines) and Eθ̂h,BCC−θh (solid lines) for T = 100

(red) and T = 200 (green). The sub-figures in the right column show the ratio of the MSE of θ̂h,BCC relative to θ̂h,LS

for T = 100 (red) and T = 200 (green).
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Figure E.3: Bias and MSE under a CEE-type VAR DGP (Partial Controls)
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Note: the sub-figures in the left column show the Eθ̂h,LS−θh (dashed lines) and Eθ̂h,BCC−θh (solid lines) for T = 100

(red) and T = 200 (green). The sub-figures in the right column show the ratio of the MSE of θ̂h,BCC relative to θ̂h,LS

for T = 100 (red) and T = 200 (green).
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