Ed Herbst

  1. Introduction ·
  2. A Crash Course in Bayesian Inference ·
  3. Linear DSGE Models and the Kalman Filter ·
  4. Monte Carlo Simulation ·
  5. Metropolis Hastings ·
  6. Sequential Monte Carlo ·
  7. Estimating a Linear DSGE Model ·
  8. Nonlinear DSGE Models and Particle Filters ·
  9. PMCMC and SMC Squared ·
  10. Hamiltonian Monte Carlo ·
  11. Quasilinear Models

jupyter notebooks

  1. Importance Sampling jupyter notebook
  2. Metropolis-Hastings jupyter notebook
  3. Particle Filtering jupyter notebook