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Small New Keynesian Model
ŷt = Et [ŷt+1]− 1

τ

(
R̂t − Et [π̂t+1]− Et [ẑt+1]

)
(1)

+ĝt − Et [ĝt+1]

π̂t = βEt [π̂t+1] + κ(ŷt − ĝt )

R̂t = ρRR̂t−1 + (1− ρR)ψ1π̂t + (1− ρR)ψ2 (ŷt − ĝt ) + εR,t

States: st =
[
ŷt , π̂t , R̂t , ĝt , ẑt ,Et [ŷt+1],Et [π̂t+1]

]′.
Shocks: εt =

[
εz,t , εg,t , εR,t

]′. Observables: yt =
[
YGRt , INFLt , INTt

]′.
YGRt = γ(Q) + 100(ŷt − ŷt−1 + ẑt ) (2)
INFLt = π(A) + 400π̂t

INTt = π(A) + r (A) + 4γ(Q) + 400R̂t .

Parameters θ = [τ, κ, ψ1, ψ2, ρR , ρg , ρz , r (A), π(A), γ(Q), σR , σg , σz ]′



Model Solution
I The model in (1) can be cast as in Linear Rational Expectations

form.

I Solving this system–ask Gary–yields (in most cases) the VAR:

st = Φ1(θ)st−1 + Φε(θ)εt . (3)

Φ1(θ) and Φε(θ) are functions of the parameters of the DSGE
model.

I Can write the observations equation as :

yt = Ψ0(θ) + Ψ1(θ)t + Ψ2(θ)st + ut , (4)

allow for a vector of measurement errors, ut .

I Equations (3) and (4) provide state space representation.



Likelihood
I Let Xt1:t2 = {xt1 , xt1+1, . . . , xt2}.

I The state-space representation provides a joint density for the
observations and latent states given the parameters:

p(Y1:T ,S1:T |θ) =
T∏

t=1

p(yt , st |Y1:t−1,S1:t−1, θ) (5)

=
T∏

t=1

p(yt |st , θ)p(st |st−1, θ),

I where p(yt |st , θ) and p(st |st−1, θ) represent the measurement
and state-transition equations, respectively.

I Problem: Bayesian Inference has to be based on the likelihood
function that is constructed only from the observables, p(Y1:T |θ)



Generic Filter
A filter generates the sequence of conditional distributions st |Y1:t and
densities p(yt |Y1:t−1, θ). In turn, the desired likelihood function can be
obtained as: p(Y1:T |θ) =

∏T
t=1 p(yt |Y1:t−1, θ).

Let p(s0|Y1:0, θ) = p(s0|θ). For t = 1 to T :

1. From iteration t − 1 we have p(st−1|Y1:t−1, θ).

2. Forecasting t given t − 1:

2.1 Transition equation:

p(st |Y1:t−1, θ) =

∫
p(st |st−1,Y1:t−1, θ)p(st−1|Y1:t−1, θ)dst−1

2.2 Measurement equation:

p(yt |Y1:t−1, θ) =

∫
p(yt |st ,Y1:t−1, θ)p(st |Y1:t−1, θ)dst

3. Updating with Bayes Theorem. Once yt becomes available:

p(st |Y1:t , θ) = p(st |yt ,Y1:t−1, θ)

=
p(yt |st ,Y1:t−1, θ)p(st |Y1:t−1, θ)

p(yt |Y1:t−1, θ)
.



Kalman Filter
I If the DSGE model is log-linearized and the errors are Gaussian,

then the distributions that appear in Generic Filter are Gaussian.

I Maintained Assumption:
εt ∼ iidN(0,Σε), ut ∼ iidN(0,Σu), (6)
s0 ∼ N

(
s̄0|0,P0|0

)
.

common to assume that s̄0|0 and P0|0 correspond to the invariant
distribution associated with st .

Distribution Mean and Variance
st−1|(Y1:t−1, θ) N

(
s̄t−1|t−1, Pt−1|t−1

)
Given from Iteration t − 1

st |(Y1:t−1, θ) N
(
s̄t|t−1, Pt|t−1

)
s̄t|t−1 = Φ1 s̄t−1|t−1
Pt|t−1 = Φ1Pt−1|t−1Φ′1 + ΦεΣεΦ′ε

yt |(Y1:t−1, θ) N
(
ȳt|t−1, Ft|t−1

)
ȳt|t−1 = Ψ0 + Ψ1 t + Ψ2 s̄t|t−1
Ft|t−1 = Ψ2Pt|t−1Ψ′2 + Σu

st |(Y1:t , θ) N
(
s̄t|t , Pt|t

)
s̄t|t = s̄t|t−1 + Pt|t−1Ψ′2F−1

t|t−1(yt − ȳt|t−1)

Pt|t = Pt|t−1 − Pt|t−1Ψ′2F−1
t|t−1Ψ2Pt|t−1



Bayesian Estimation of DSGE
Models



The Bayesian Choice
I Bayesian approach: joint distribution over data and parameters.

Bayesian Model: p(Y , θ)

I Can be factorized into

Likelihood× Prior = p(Y |θ)× p(θ)

I Inference: posterior distribution p(θ|Y ) via Bayes rule

p(θ|Y ) =
p(Y |θ)p(θ)

p(Y )
, p(Y ) =

∫
p(Y |θ)p(θ)dθ.

I The Bayesian approach prescribes consistency among the
beliefs held by an individual and their reasonable relation to any
kind of objective data. Learning about θ takes place by updating
the prior distribution in light of the data Y .



From Prior to Posterior
I Prior distributions are used to describe the state of knowledge

about the parameter vector θ before observing the sample Y .
I In our example, we have to specify a joint probability distribution

in 13-dimensional parameter space.

Eliciting prior distributions [Del Negro-Schorfheide (2008)]:
I Group parameters by categories: θ(ss) (related to steady state),
θ(exo) (related to exogenous processes), θ(endo) (affects
mechanisms but not steady state).

θ(ss) = [r (A), π(A), γ(Q)]′

θ(exo) = [ρg , ρz , σg , σz , σR]′

θ(endo) = [τ, κ, ψ1, ψ2, ρR]′



Priors, Continued
I Priors for θ(ss) are often based on pre-sample averages. If

sample starts in 1983:I, the prior distribution for r (A), π(A), and
γ(Q) may be informed by data from the 1970s.

I Priors for θ(endo) may be partly based on microeconometric
evidence.

I Priors for θ(exo) are the most difficult to specify. You could specific
indirectly, by looking at the volatility/autocorrelation of
observables implied by θ(exo) given other parameters.

Above all: Generate draws from the prior distribution of θ; compute
important transformations of θ such as steady-state ratios and
possibly impulse-response functions or variance decompositions.

I Marginals may be plausible, while joint is not.
I Nonlinear transformations of uniform variables are not uniform!



Try not to set priors based Y
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ρ = x2

x2+y2 , x ∼ U[0,1], y ∼ U[0,1]

Density of ρ
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Bayesian Estimation of DSGE
Models



The main event
I Inference: Need to characterize posterior p(θ|Y ).

I Unfortunately, for many interesting models it is not possible to
evaluate the moments and quantiles of the posterior p(θ|Y )
analytically.

I Rules of game: we can only numerically evaluate prior p(θ) and
likelihood p(Y |θ).

I To evaluate posterior moments of function h(θ), we need
numerical techniques.

Look posterior samplers that generate sequences of draws θi ,
i = 1, . . . ,N from p(θ|Y ).

I (Monte Carlo) averages of these draws typically follow Strong
Law of Large Numbers (SLLN) and (sometimes) Central Limit
Theorem (CLT).

I SLLN justifies using averages to approx. moments, CLT
characterizes accuracy of approx.



Sampler 1: Importance Sampler



Importance Sampling

π(θ) =
f (θ)

Z
=

p(Y |θ)p(θ)

p(θ)
(7)

f (·) is the function we can evaluate numerically.

References: Hammersley and Handscomb (1964), Kloek and van
Dijk (1978), and Geweke (1989).

Let g be an arbitrary, easy-to-sample pdf over θ (think normal
distribution).

Importance sampling (IS) is based on the following identity:

Eπ[h(θ)] =

∫
h(θ)π(θ)dθ =

1
Z

∫
Θ

h(θ)
f (θ)

g(θ)
g(θ)dθ. (8)

Since Eπ[1] = 1,

Z =

∫
Θ

f (θ)

g(θ)
g(θ)dθ.



(Unnormalized) Importance weight:

w(θ) =
f (θ)

g(θ)

Normalized Importance Weight:

v(θ) =
w(θ)∫

w(θ)g(θ)dθ
=

w(θ)∫
Zπ(θ)dθ

=
w(θ)

Z
. (9)

Can show:

Eπ[h(θ)] =

∫
v(θ)h(θ)g(θ)dθ. (10)



Algorithm (Importance Sampling)
1. For i = 1 to N, draw θi iid∼ g(θ) and compute the unnormalized

importance weights

w i = w(θi ) =
f (θi )

g(θi )
. (11)

2. Compute the normalized importance weights

W i =
w i

1
N

∑N
i=1 w i

. (12)

An approximation of Eπ[h(θ)] is given by

h̄N =
1
N

N∑
i=1

W ih(θi ). (13)

Note W i is (slightly) different from v in previous slide.



I Refer to the collection of pairs {(θi ,W i )}N
i=1 as a particle

approximation of π(θ).

I The accuracy of the approximation is driven by the “closeness” of
g(·) to f (·) and is reflected in the distribution of the weights.

I If the distribution of weights is very uneven, the Monte Carlo
approximation h̄ is inaccurate.

I Uniform weights arise if g(·) ∝ f (·), which means that we are
sampling directly from π(θ).



Effectiveness of IS depends on similarity of f and g
f = N (0,1), g1 = t(0,1,5), g2 = N (2,1)
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Only a few draws from N(2,1) have meaningful weight.
=⇒ estimate is based on small sample.
=⇒ estimate will be noisy.



Convergence
I SLLN: If Eg [|hf/g|] <∞ and Eg [|f/g|] <∞, see Geweke (1989),

the Monte Carlo estimate h̄N defined in (13) converges almost
surely (a.s.) to Eπ[h(θ)] as N −→∞.

I CLT: Provided that supθ π(θ)/g(θ) <∞ and Eg [h2] <∞, we can
apply a multivariate extension of the Lindeberg-Levy CLT.

Argument: first order taylor expansion of h̄N around Eπ[h],
(extremely) tedious algebra.

√
N(h̄N − Eπ[h]) =⇒ N

(
0,Ω(h)

)
, (14)

where

Ω(h) = Vg [(π/g)(h − Eπ[h])].



Accuracy
I Assess the accuracy by computing a Monte Carlo approximation

h̄N multiple times and examine its variability across repeated
runs of the posterior sampler.

I If h̄N satisfies a CLT and the number of draws N is sufficiently
large, then the variance across repeated runs of the algorithm
(provided this variance is finite for the given N) will approximately
coincide with the asymptotic variance implied by the CLT.

I Define inefficiency factor relative to IID sampling,

InEff∞ =
Ω(h)

Vπ[h]
.

If Ineff∞ ¿ 1 we are worse than iid sampling.



Numerical Illustration
I Let’s take a harder π(θ), the set-identified posterior from

Moon-Schorfheide (2013).
I Consider diffuse and concentrated importance sample

densities g.
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Experiment
I Using various Nd raw , generate IS approximations for h(θ) = θ

and h(θ) = θ2.

I Calculate estimate of InEff∞ using Nrun = 1000 Monte Carlo
simulations, as well as the exact value [by sampling from π(θ).]
Estimates come from:

InEffN =
V[h̄N ]

Vπ[h]/N
. (15)

I Also calculate poor man’s version of Inefficiency Factor, because
everyone uses it.

InEff∞ ≈ 1 + Vg [π/g]. (16)



Concetrated IS Density
I solid line = estimates of InEff∞[h], dashed = truth
I triangles = h(θ) = θ, circles = h(θ) = θ2

I grey line = poor man’s inefficiency
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Concetrated IS Density
I Solid line = estimates of InEff∞[h], dashed = truth
I triangles = h(θ) = θ, circles = h(θ) = θ2

I grey line = poor man’s inefficiency
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Take aways
I It is important that the importance density g is well-tailored

toward the target distribution π!

I Everything is h specific!

I with approximately elliptical posterior, a good importance density
can be obtained by centering a fat-tailed t distribution at the
mode of π and using a scaled version of the inverse Hessian of
lnπ at the mode to align the contours of the importance density
with the contours of the posterior π.

I Very bad for highly irregular and non-elliptical posteriors...



Sampler 2: Metropolis-Hastings
Sampler



The Metropolis-Hastings Algorithm
I Metropolis-Hastings (MH) algorithm belongs to the class of

Markov chain Monte Carlo (MCMC) algorithms.

I Algorithm constructs a Markov chain such that the stationary
distribution associated with this Markov chain is unique and
equals the posterior distribution of interest.

I First version constructed by Metropolis, Rosenbluth, Rosenbluth,
Teller, and Teller (1953). Later generalized by Hastings (1970).
Tierney (1994) proved important convergence results for MCMC
algorithms.

I Introduction: Chib and Greenberg (1995). Textbook Robert and
Casella (2004) or Geweke (2005).



I Importance sampler generates a sequence of independent
draws from the posterior distribution π(θ), the MH algorithm
generates a sequence of serially correlated draws.

I As long as the correlation in the Markov chain is not too strong,
Monte Carlo averages of these draws can accurately
approximate posterior means of h(θ).

I We are going to care a lot about this correlation. Why?

√
n(X̄ −E[X̄ ]) =⇒ N

(
0,

1
n

n∑
i=1

V[Xi ] +
1
n

n∑
i=1

∑
j 6=i

COV (Xi ,Xj )

)
.



A key ingredient is the proposal distribution q(ϑ|θi−1), which
potentially depends on the draw θi−1 in iteration i − 1 of the algorithm.

Algorithm (Generic MH Algorithm)
For i = 1 to N:

1. Draw ϑ from a density q(ϑ|θi−1).
2. Set θi = ϑ with probability

α(ϑ|θi−1) = min
{

1,
p(Y |ϑ)p(ϑ)/q(ϑ|θi−1)

p(Y |θi−1)p(θi−1)/q(θi−1|ϑ)

}
and θi = θi−1 otherwise.

Because p(θ|Y ) ∝ p(Y |θ)p(θ) we can replace the posterior densities
in the calculation of the acceptance probabilities α(ϑ|θi−1)

This yields a Markov transition kernel K (θ|θ̃), where the conditioning
value θ̃ corresponds to the parameter draw from iteration i − 1.



Convergence
Probability theory for MH is much harder than for IS.

1. Suppose that θ0 ∼ g(·) and θN is obtained by iterating the
Markov transition kernel forward N times, then is it true that θN is
approximately distributed according to p(θ|Y ) and the
approximation error vanishes as N −→∞?

2. Suppose that (i) is true, is it also true that sample averages of θi ,
i = 1, . . . ,N satisfy a SLLN and a CLT?

Key property: invariance of Markov Chain.

p(θ|Y ) =

∫
K (θ|θ̃)p(θ̃|Y )d θ̃. (17)

Show this property using reversibility of the Markov Chain

Not sufficient for SLLN or CLT, these things depend on q and π.

Look at specific example.



A Specific Example
I Suppose the parameter space is discrete and θ can only take

two values: τ1 and τ2.

I The posterior distribution then simplifies to two probabilities
which we denote as πl = P{θ = τl |Y}, l = 1,2.

I The proposal distribution in Algorithm 2 can be represented as a
two-stage Markov process with transition matrix

Q =

[
q11 q12
q21 q22

]
, (18)

where qlk is the probability of drawing ϑ = τk conditional on
θi−1 = τl .

I Assume that

q11 = q22 = q, q12 = q21 = 1− q

and that the posterior distribution has the property

π2 > π1.



Deriving the Transition Kernel
I Suppose that θi−1 = τ1. Then with probability q, ϑ = τ1. The

probability that this draw will be accepted is

α(τ1|τ1) = min
{

1,
π1/q
π1/q

}
= 1.

I With probability 1− q the proposed draw is ϑ = τ2. The
probability that this draw will be rejected is

1− α(τ2|τ1) = 1−min
{

1,
π2/(1− q)

π1/(1− q)

}
= 0

because we previously assumed that π2 > π1.
I The probability of a transition from θi−1 = τ1 to θi = τ1 is

k11 = q · 1 + (1− q) · 0 = q.



Transition Kernel, Continued
I Similar reasoning as before

K =

[
k11 k12
k21 k22

]
=

[
q (1− q)

(1− q)π1
π2

q + (1− q)
(

1− π1
π2

) ]
.

I K has two eigenvalues λ1 and λ2:

λ1(K ) = 1, λ2(K ) = q − (1− q)
π1

1− π1
. (19)

Eigenvector associated with with λ1(K ) determines the invariant
distribution of the Markov chain (=posterior). If λ2(K ) 6= 1, this
distribution is unique.

The persistence of the Markov chain is characterized by the
eigenvalue λ2(K ).



Markov Chain
I We can represent the Markov Chain generated by MH as an

AR(1). Define:

ξi =
θi − τ1

τ2 − τ1
, ξi ∈ {0,1}.

ξi follows the first-order autoregressive process

ξi = (1− k11) + λ2(K )ξi−1 + ν i . (20)

Conditional on ξi−1 = j − 1, j = 1,2, the innovation ν i has
support on kjj and (1− kjj ), its conditional mean is equal to zero,
and its conditional variance is equal to kjj (1− kjj ).



More on Markov Chain
I Persistence of the Markov chain depends on the proposal

distribution, which in our discrete example is characterized by the
probability q.

I You could get an iid sample from the posterior by setting q = π1,
so λ2(K ) = 0.)

I OTOH, if q = 1, then θi = θ1 for all i and the equilibrium
distribution of the chain is no longer unique.

I General goal of MCMC: keep the persistence of the chain as low
as possible.



h̄N =
1
N

N∑
i=1

h(θi )

we deduce from a central limit theorem for dependent random
variables that

√
N(h̄N − Eπ[h]) =⇒ N

(
0,Ω(h)

)
,

where Ω(h) is now the long-run covariance matrix

Ω(h) = lim
L−→∞

Vπ[h]

(
1 + 2

L∑
l=1

L− l
L

(
q − (1− q)

π1

1− π1

)l
)
.

In turn, the asymptotic inefficiency factor is given by

InEff∞ =
Ω(h)

Vπ[h]
(21)

= 1 + 2 lim
L−→∞

L∑
l=1

L− l
L

(
q − (1− q)

π1

1− π1

)l

.



Numerical Example
I Bernoulli distribution (τ1 = 0, τ2 = 1) with π1 = 0.2.

I Assess the effectiveness of different MH settings, we vary
q ∈ [0,1).

I Look at autocorrelation for q = {0,0.2,0.5,0.99}.

I Ineff∞ for q ∈ [0,1).

I Relationship between across chain variance and within chain
(HAC) estimates. This the heart of many convergence statistics.



Autocorrelation Functions
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Take Aways
I high autocorrelation reflects the fact that it will take a high

number of draws to accurately reflect the target distribution

I for large values of q, the variance of Monte Carlo estimates of h
drawn from the MH chain are much larger than the variance of
estimates derived from iid draws

I HAC estimates bracket small-sample estimates, indicating
convergence, but they tend to underestimate variance for all q.

How to pick q for a DSGE model?



Random Walk
Metropolis-Hastings



Random Walk Metropolis-Hastings
I Most popular q for DSGE Models.

I q(ϑ|θi−1) can be expressed as the random walk ϑ = θi−1 + η

I η is normally distributed with mean zero and variance c2Σ̂.

I Given the symmetric nature of the proposal distribution, the
acceptance probability becomes

α = min
{

p(ϑ|Y )

p(θi−1|Y )
,1
}
.

I Still need to specify c and Σ̂.



On Σ̂

I Want Σ̂ to incorporate information about the posterior.

I One approach: Schorfheide (2000), is to set Σ̂ to be the negative
of the inverse Hessian at the mode of the log posterior, θ̂,
obtained by running a numerical optimization .

This has appealing large sample properties, but can be tedious
and innacurate.

I Another (adaptive) approach: use prior variance for a first
sequence of posterior draws, the compute the sample
covariance matrix and use that as Σ̂. Must be fixed eventually.

I Here we cheat:

RWMH-V : Σ̂ = Vπ[θ].



Picking Scaling c
I Goldilocks principal: choose c so that you don’t reject too much

or too little.

I Roberts, Gelman, and Gilks (1997) have derived a limit (in the
size of parameter vector) optimal acceptance rate of 0.234 for a
special case (normal posterior).

I Most practitioners target an acceptance rate between 0.20 and
0.40.

I Requites pre-estimation tuning.



Baseline Estimation

Table: Posterior Estimates of DSGE Model Parameters

Mean [0.05, 0.95] Mean [0.05,0.95]
τ 2.83 [ 1.95, 3.82] ρr 0.77 [ 0.71, 0.82]
κ 0.78 [ 0.51, 0.98] ρg 0.98 [ 0.96, 1.00]
ψ1 1.80 [ 1.43, 2.20] ρz 0.88 [ 0.84, 0.92]
ψ2 0.63 [ 0.23, 1.21] σr 0.22 [ 0.18, 0.26]
r (A) 0.42 [ 0.04, 0.95] σg 0.71 [ 0.61, 0.84]
π(A) 3.30 [ 2.78, 3.80] σz 0.31 [ 0.26, 0.36]
γ(Q) 0.52 [ 0.28, 0.74]

Notes: We generated N = 100,000 draws from the posterior and
discarded the first 50,000 draws. Based on the remaining draws we
approximated the posterior mean and the 5th and 95th percentiles.



More on c
Vary c ∈ (0,2]. Look at effect on

I Acceptance Rate
I Ineff∞
I IneffN

What is the relationship between acceptance rate and accuracy?



Effects of Scaling
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Acceptance Rate vs. Accuracy
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Next Time
I More elaborate MCMC; blocking.

I Where this really breaks down: 3 DSGE Examples.

I An alternative approach: Sequential Monte Carlo
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