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Modes of Interence

▶ Previously, we focussed on frequentist inference (repeated
sampling prodecures)

▶ measures of accuracy and performance that we used to assess
the statistical procedures were pre-experimental

▶ However, many statisticians and econometricians believed that
post-experimental reasoning should be used to assess inference
procedures

▶ wherein only the actual observation Y T is relevant and not the
other observations in the sample space that could have been
observed



Example

Suppose Y1 and Y2 are independently and identically distributed
and

Pθ{Yi = θ − 1} =
1
2
, Pθ{Yi = θ + 1} =

1
2

Consider the following confidence set

C (Y1,Y2) =

{ 1
2(Y1 + Y2) if Y1 ̸= Y2
Y1 − 1 if Y1 = Y2

From a pre-experimental perspective C (Y1,Y2) is a 75% confidence
interval.

However, from a post-experimental perspective, we are a “100%
confident” that C (Y1,Y2) contains the“true” θ if Y1 ̸= Y2, whereas
we are only “50% percent” confident if Y1 = Y2.



Some Principles

Does it make sense to report a pre-experimental measure of
accuracy, when it is known to be misleading after seeing the data?

Conditionality Principle: If an experiment is selected by some
random mechanism independent of the unknown parameter θ, then
only the experiment actually performed is relevant.

Most also agree with

Sufficiency Principle: Consider an experiment to determine the
value of an unknown parameter θ and suppose that S(·) is a
sufficient statistic. If S(Y1) = S(Y2) then Y1 and Y2 contain the
same evidence with respect to θ.



Likelihood Principle

The combination of the quite reasonable Conditionality Principle
and the Sufficiency Principle lead to the more controversial
Likelihood Principle (see discussion in Robert (1994)).

Likelihood Principle: All the information about an unknown
parameter θ obtainable from an experiment is contained in the
likelihood function of θ given the data. Two likelihood functions for
θ (from the same or different experiments) contain the same
information about θ if they are proportional to another.

Frequentist maximum-likelihood estimation and inference typically
violates the LP!

Bayesian methods do not



Bayesian Models

A Bayesian model consists of:
▶ parametric probability distribution for the data, which we will

characterize by the density p(Y T |θ)
▶ prior distribution p(θ).

The density p(Y T |θ) interpreted as a function of θ with fixed Y T

is the likelihood function.

The posterior distribution of the parameter θ, that is, the
conditional distribution of θ given YT , can be obtained through
Bayes theorem:

p(θ|Y T ) =
p(Y T |θ)p(θ)∫
p(Y T |θ)p(θ)dθ



Bayesian Models continued

▶ can interpret this formula as an inversion of probabilities.
▶ think of the parameter θ as “cause” and the data Y T as

“effect”
▶ formula allows the calculation of the probability of a particular

“cause” given the observed “effect” based on
the probability of the “effect” given the possible “causes”

Unlike in the frequentist framework, the parameter θ is regarded as
a random variable.

This does, however, not imply that Bayesians consider parameters
to be determined in a random experiment.

The calculus of probability is used to characterize the state of
knowledge



Elephant in Room

Any inference in a Bayesian framework is to some extent sensitive
to the choice of prior distribution p(θ).

The prior reflects the initial state of mind of an individual and is
therefore “subjective”

Many econometricians believe that the result of a scientific inquiry
should not depend on the subjective beliefs and very sceptical of
Bayesian methods.

But all analysis involves some subjective choices!



Introduction to Bayesian Statistics

▶ denote the sample space by Y with elements Y T .
▶ Probability distribution P will be defined on the product space

Θ⊗ Y.
▶ The conditional distribution of θ given Y T is denoted by PY T

▶ Pθ denotes the conditional distribution of Y T given θ



An Example

The parameter space is Θ = {0, 1},

the sample space is Y = {0, 1, 2, 3, 4}.

0 1 2 3 4
Pθ=0(Y ) .75 .140 .04 .037 .033
Pθ=1(Y ) .70 .251 .04 .005 .004

Suppose we consider θ = 0 and θ = 1 as equally likely a priori.
Moreover, suppose that the observed value is Y = 1. The marginal
probability of Y = 1 is

P{Y = 1|θ = 0}P{θ = 0}+ P{Y = 1|θ = 1}P{θ = 1}
= 0.140 · 0.5 + 0.251 · 0.5 = 0.1955 (1)



Example, Continued

The posterior probabilities for θ being zero or one are

P{θ = 0|Y = 1} =
P{Y = 1|θ = 0}P{θ = 0}

P{Y = 1}
=

0.07
0.1955

= 0.358

P{θ = 1|Y = 1} =
P{Y = 1|θ = 1}P{θ = 1}

P{Y = 1}
=

0.1255
0.1955

= 0.642

Thus, the observation Y = 1 provides evidence in favor of θ = 1.



Example 2
Consider the linear regression model:

yt = x ′tθ + ut , ut ∼ iidN (0, 1), (2)

which can be written in matrix form as Y = Xθ + U. We assume
that X ′X/T

p−→ QXX and X ′Y
p−→ QXY = QXX θ. The dimension

of θ is k . The likelihood function is of the form

p(Y |X , θ) = (2π)−T/2 exp
{
Y − Xθ)′(Y − Xθ)

}
. (3)

Suppose the prior distribution is of the form

θ ∼ N
(

0k×1, τ
2Ik×k

)
(4)

with density

p(θ) = (2πτ2)−k/2 exp

{
− 1

2τ2 θ
′θ

}
(5)

For small values of τ the prior concentrates near zero, whereas for
larger values of τ it is more diffuse.



Example 2, Continued

According to Bayes Theorem the posterior distribution of θ is
proportional to the product of prior density and likelihood function

p(θ|Y ,X ) ∝ p(θ)p(Y |X , θ). (6)

The right-hand-side is given by

p(θ)p(Y |X , θ) ∝ (2π)−
T+k

2 τ−k exp

{
− 1

2
[Y ′Y − θ′X ′Y − Y ′Xθ − θ′X ′Xθ

− τ−2θ′θ]

}
. (7)



Example 2, Continued

The exponential term can be rewritten as follows

Y ′Y − θ′X ′Y − Y ′Xθ − θ′X ′Xθ − τ−2θ′θ

= Y ′Y − θ′X ′Y − Y ′Xθ + θ′(X ′X + τ−2I)θ (8)

=

(
θ − (X ′X + τ−2I)−1X ′Y

)′(
X ′X + τ−2I

)
(
θ − (X ′X + τ−2I)−1X ′Y

)
+Y ′Y − Y ′X (X ′X + τ−2I)−1X ′Y .

Thus, the exponential term is a quadratic function of θ.



Example 2, Continued
The exponential term is a quadratic function of θ. This information
suffices to deduce that the posterior distribution of θ must be a
multivariate normal distribution

θ|Y ,X ∼ N (θ̃T , ṼT ) (9)

with mean and covariance

θ̃T = (X ′X + τ−2I)−1X ′Y (10)
ṼT = (X ′X + τ−2I)−1. (11)

The maximum likelihood estimator for this problem is
θ̂mle = (X ′X )−1X ′Y and its asymptotic (frequentist) sampling
variance is T−1Q−1

XX .
▶ Assumption that both likelihood function and prior are

Gaussian made the derivation of the posterior simple.
▶ The pair of prior and likelihood is called conjugate
▶ leads to a posterior distribution that is from the same family



Takeaway

As τ −→ ∞ the prior becomes more and more diffuse and the
posterior distribution becomes more similar to the sampling
distribution of θ̂mle |θ:

θ|Y ,X
approx∼ N

(
θ̂mle , (X

′X )−1
)
. (12)

If τ −→ 0 the prior becomes dogmatic and the sample information
is dominated by the prior information. The posterior converges to a
point mass that concentrates at θ = 0.

In large samples (fixed τ , T −→ ∞) the effect of the prior becomes
negligibleand the sample information dominates

θ|Y ,X
approx∼ N

(
θ̂mle ,T

−1Q−1
XX

)
. □ (13)



Estimation and Inference

▶ In principle, all the information with respect to θ is
summarized in the posterior p(θ|Y ) and we could simply
report the posterior density to our audience.

▶ However, in many situations our audience prefers results in
terms of point estimates and confidence intervals, rather than
in terms of a probability density.

▶ we might be interested to answer questions of the form: do
the data favor model M1 or M2?

Adopt a decision theoretic approach



Decision Theoretic Approach

decision rule δ(Y T ) that maps observations into decisions, and a
loss function L(θ, δ) according to which the decisions are evaluated.

δ(Y T ) : Y 7→ D (14)
L(θ, δ) : Θ⊗D 7→ R+ (15)

D denotes the decision space.

The goal is to find decisions that minimize the posterior expected
loss EY T [L(θ, δ(Y T ))].

The expectation is taken conditional on the data x , and integrates
out the parameter θ.



Point Estimation

the goal is to construct a point estimate δ(Y T ) of θ. It involves
two steps:
▶ Find the posterior p(θ|Y T ).
▶ Determine the optimal decision δ(Y T ).

The optimal decision depends on the loss function L(θ, δ(Y T )).



Example 1, Continued
Consider the zero-one loss function

L(θ, δ) =

{
0 δ = θ
1 δ ̸= θ

}
. (16)

The posterior expected loss is EY [L(θ, δ)] = 1 − EY {θ = δ} The
optimal decision rule is

δ = argmaxθ′∈Θ PY {θ = θ′} (17)

the point estimator under the zero-one loss is equal to the
parameter value that has the highest posterior probability. We
showed that

P{θ = 0|Y = 1} = 0.358 (18)
P{θ = 1|Y = 1} = 0.642 (19)

Thus δ(Y = 1) = 1.



Example 2, Continued

The quadratic loss function is of the form L(θ, δ) = (θ − δ)2

The optimal decision rule is obtained by minimizing

min
δ∈D

EY T [(θ − δ)2] (20)

It can be easily verified that the solution to the minimization
problem is of the form δ(Y T ) = EY T [θ].

Thus, the posterior mean θ̃T is the optimal point predictor under
quadratic loss.



Asymptotically

Suppose data are generated from the model yt = x ′tθ0 + ut .
Asymptotically the Bayes estimator converges to the “true”
parameter θ0

θ̃T = (X ′X + τ−2I)−1X ′Y (21)

= θ0 +

(
1
T
X ′X +

1
τ2T

I
)−1( 1

T
X ′U

)
p−→ θ0

The disagreement between two Bayesians who have different priors
will asymptotically vanish. □



Testing Theory

Consider the hypothesis test of H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1
where Θ1 = Θ/Θ0.

Hypothesis testing can be interpreted as estimating the value of the
indicator function {θ ∈ Θ0}.

Consider the loss function

L(θ, δ) =


0 δ = {θ ∈ Θ0} correct decision
a0 δ = 0, θ ∈ Θ0 Type 1 error
a1 δ = 1, θ ∈ Θ1 Type 2 error

(22)

Note that the parameters a1 and a2 are part of the econometricians
preferences.



Optimal Decision Rule

δ(Y T ) =

{
1 PY T {θ ∈ Θ0} ≥ a1/(a0 + a1)
0 otherwise

(23)

The expected loss is

EY T L(θ, δ) = {δ = 0}a0PY T {θ ∈ Θ0}+ {δ = 1}a1[1 − PY T {θ ∈ Θ0}]

Thus, one should accept the hypothesis θ ∈ Θ0 (choose δ = 1) if

a1PY T {θ ∈ Θ1} = a1[1 − PY T {θ ∈ Θ0}] ≤ a0PY T {θ ∈ Θ0} (24)



Bayes Factors

Bayes Factors: ratio of posterior probabilities and prior probabilities
in favor of that hypothesis:

B(Y T ) =
Posterior Odds

Prior Odds
=

PY T {θ ∈ Θ0}/PY T {θ ∈ Θ1}
P{θ ∈ Θ0}/P{θ ∈ Θ1}

(25)



Example 1, Continued
Suppose the observed value of Y is 2. Note that

Pθ=0{Y ≥ 2} = 0.110 (26)
Pθ=1{Y ≥ 2} = 0.049 (27)

The frequentist interpretation of this result would be that there is
significant evidence against H0 : θ = 1 at the 5 percent level.

Frequentist rejections are based on unlikely events that did not
occur!!

The Bayesian answers in terms of posterior odds is

PY=2{θ = 0}
PY=2{θ = 1}

= 1 (28)

and in terms of the Bayes Factor B(Y ) = 1. Y = 2 does not favor
one versus the other model.



Example 2, Continued

Suppose we only have one regressor k = 1.

Consider the hypothesis H0 : θ < 0 versus H1 : θ ≥ 0. Then,

PY T {θ < 0} = P

{
θ − θ̃T√

ṼT

< − θ̃T√
ṼT

}
= Φ

(
− θ̃T/

√
ṼT

)
(29)

where Φ(·) denotes the cdf of a N (0, 1). Suppose that a0 = a1 = 1

H0 is accepted if

Φ

(
− θ̃T/

√
ṼT

)
≥ 1/2 or θ̃T < 0 (30)



Example 2, Continued

Suppose that yt = xtθ0 + ut . Note that

θ̃T√
ṼT

=

√
(

1
τ2 +

∑
x2
t )

−1
∑

xtyt (31)

=
√
Tθ0

1
T

∑
x2
t√

1
T

∑
x2
t + 1

τ2T

+

1√
T

∑
xtut√

1
T

∑
x2
t + 1

τ2T

(32)

θ̃T/
√

ṼT diverges to +∞ if θ0 > 0 and PY T {θ < 0} converges to
zero.

Vice versa, if θ0 < 0 then θ̃T/
√

ṼT diverges to −∞ and
PY T {θ < 0} converges to one.

Thus for almost all values of θ0 (except θ0 = 0) the Bayesian test
will provide the correct answer asymptotically.



Point Hypotheses

Suppose in the context of Example~2 we would like to test
H0 : θ = 0 versus H0 : θ ̸= 0.

Since P{θ = 0} = 0 it follows that PY T {θ = 0} = 0 and the null
hypothesis is never accepted!

This observations raises the question: are point hypotheses
realistic?

Only, if one is willing to place positive probability λ on the event
that the null hypothesis is true.



A modification of the prior
Consider the modified prior

p∗(θ) = λ∆[{θ = 0}] + (1 − λ)p(θ)

where ∆[{θ = 0}] is a point mass or dirac function.

The marginal density of Y T can be derived as follows∫
p(Y T |θ)p∗(θ)dθ = λ

∫
p(Y T |θ)∆[{θ = 0}]dθ

+(1 − λ)

∫
p(Y T |θ)p(θ)dθ

= λ

∫
p(Y T |0)∆[{θ = 0}]dθ

+(1 − λ)

∫
p(Y T |θ)p(θ)dθ

= λp(Y T |0) + (1 − λ)

∫
p(Y T |θ)p(θ)dθ



Evidence for θ = 0

The posterior probability of θ = 0 is given by {

P
YT {θ = 0} = lim

ϵ−→0
P
YT {0 ≤ θ ≤ ϵ} (33)

= lim
ϵ−→0

λ
∫ ϵ
0 p(YT |θ)∆[{θ = 0}]dθ + (1 − λ)

∫ ϵ
0 p(YT |θ)p(θ)dθ

λp(YT |0) + (1 − λ)
∫
p(YT |θ)p(θ)dθ

=
λp(YT |0)

λp(YT |0) + (1 − λ)
∫
p(YT |θ)p(θ)dθ

. (34)

}



Example 2, Continued

Assume that λ = 1/2. In order to obtain the posterior probability
that θ = 0 we have to evaluate

p(Y |X , θ = 0) = (2π)−T/2 exp

{
−1

2
Y ′Y

}
(35)

and calculate the marginal data density

p(Y |X ) =

∫
p(Y |X , θ)p(θ)dθ. (36)

Typically, this is a pain! However, since everything is normal here,
we can show:

p(Y |X ) = (2π)−T/2τ−k |X ′X + τ−2|−1/2

× exp

{
−1

2
[Y ′Y − Y ′X (X ′X + τ−2I)−1X ′Y ]

}
.



Posterior Odds

the posterior odds ratio in favor of the null hypothesis is given by

PY T {θ = 0}
PY T {θ ̸= 0}

= τk |X ′X + τ−2|1/2

× exp

{
−1

2
[Y ′X (X ′X + τ−2I)−1X ′Y ]

}
(37)

Taking logs and standardizing the sums by T−1 yields

ln

[
PY T {θ = 0}
PY T {θ ̸= 0}

]
= −T

2

(
1
T

∑
xtyt

)′( 1
T

∑
xtx

′
t +

1
τ2T

)−1

×
(

1
T

∑
xtyt

)
+ k

2 lnT + 1
2 ln

∣∣∣∣ 1
T

∑
xtx

′
t +

1
τ2T

∣∣∣∣+ k ln τ



Assessing Posterior Odds

Assume that Data Were Generated from yt = x ′tθ0 + ut .

Y ′X (X ′X + τ−2)−1X ′Y

= θ′0X
′X (X ′X + τ−2)−1X ′Xθ0 + U ′X (X ′X + τ−2)−1X ′U

+U ′X (X ′X + τ−2)−1X ′Xθ0 + θ′0X (X ′X + τ−2)−1X ′U

= Tθ′0

(
1
T

∑
xtx

′
t

)−1

θ0 +
√
T2

(
1√
T

∑
xtut

)′
θ0

+

(
1√
T

∑
xtut

)′( 1
T

∑
xtx

′
t

)−1( 1√
T

∑
xtut

)
+ Op(1).



Asymptotics

If the null hypothesis is satisfied θ0 = 0 then

ln

[
PY T {θ = 0}
PY T {θ ̸= 0}

]
=

k

2
lnT + small −→ +∞. (38)

That is, the posterior odds in favor of the null hypothesis converge
to infinity and the posterior probability of θ = 0 converges to one.

On the other hand, if the alternative hypothesis is true θ0 ̸= 0 then

ln

[
PY T {θ = 0}
PY T {θ ̸= 0}

]
= −T

2
θ′0

(
1
T

∑
xtx

′
t

)−1

θ0 + small −→ −∞.

and the posterior odds converge to zero, which implies that the
posterior probability of the null hypothesis being true converges to
zero.



Summing up

Bayesian test is consistent in the following sense.
▶ If the null hypothesis is “true” then the posterior probability of

H0 converges in probability to one as T −→ ∞.
▶ If the null hypothesis is false then the posterior probability of

H0 tends to zero

Thus, asymptotically the Bayesian test procedure has no “Type 1”
error.



Understanding this

consider the marginal data density p(Y |X ) in Example~2. The
terms that asymptotically dominate are

ln p(Y |X ) = −T

2
ln(2π)− 1

2
(Y ′Y − Y ′X (X ′X )−1X ′Y )− k

2
lnT + small(39)

= ln p(Y |X , θ̂mle)−
k

2
lnT + small

= maximized likelihood function − penalty. (40)

The marginal data density has the form of a penalized likelihood
function.

The maximized likelihood function captures the goodness-of-fit of
the regression model in which θ is freely estimated.

The second term penalizes the dimensionality to avoid overfitting
the data.



Confidence Sets
The frequentist definition is that CY T ⊆ Θ is an α confidence
region if

Pθ{θ ∈ CY T } ≥ 1 − α ∀θ ∈ Θ (41)

A Bayesian confidence set is defined as follows. CY T ⊆ Θ is α
credible if

PY T {θ ∈ CY T } ≥ 1 − α (42)

A highest posterior density region (HPD) is of the form

CY T = {θ : p(θ|Y T ) ≥ kα} (43)

where kα is the largest bound such that

PY T {θ ∈ CY T } ≥ 1 − α

The HPD regions have the smallest size among all α credible
regions of the parameter space Θ.



Example 2, Continued

The Bayesian highest posterior density region with coverage 1 − α
for θj is of the form

CY T =
[
θ̃T ,j − zcrit [ṼT ]

1/2
jj ≤ θj ≤ θ̃T ,j + zcrit [ṼT ]

1/2
jj

]
where [ṼT ]jj is the j ’th diagonal element of ṼT , and zcrit is the
α/2 critical value of a N (0, 1).

In the Gaussian linear regression model the Bayesian interval is very
similar to the classical confidence interval, but its statistical
interpretation is quite different. □
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