ECON 616: Lecture Five: Introduction to Bayesian Inference

Ed Herbst

Last Updated: March 13, 2025

Modes of Interence

- Previously, we focussed on frequentist inference (repeated sampling prodecures)
- measures of accuracy and performance that we used to assess the statistical procedures were pre-experimental
- However, many statisticians and econometricians believed that post-experimental reasoning should be used to assess inference procedures
- wherein only the actual observation Y^T is relevant and not the other observations in the sample space that could have been observed

Example

Suppose Y_1 and Y_2 are independently and identically distributed and

$$P_{\theta}\{Y_i = \theta - 1\} = \frac{1}{2}, \quad P_{\theta}\{Y_i = \theta + 1\} = \frac{1}{2}$$

Consider the following confidence set

$$C(Y_1, Y_2) = \begin{cases} \frac{1}{2}(Y_1 + Y_2) & \text{if } Y_1 \neq Y_2 \\ Y_1 - 1 & \text{if } Y_1 = Y_2 \end{cases}$$

From a pre-experimental perspective $C(Y_1, Y_2)$ is a 75% confidence interval.

However, from a post-experimental perspective, we are a "100% confident" that $C(Y_1, Y_2)$ contains the "true" θ if $Y_1 \neq Y_2$, whereas we are only "50% percent" confident if $Y_1 = Y_2$.

Some Principles

Does it make sense to report a pre-experimental measure of accuracy, when it is known to be misleading after seeing the data?

Conditionality Principle: If an experiment is selected by some random mechanism independent of the unknown parameter θ , then only the experiment actually performed is relevant.

Most also agree with

Sufficiency Principle: Consider an experiment to determine the value of an unknown parameter θ and suppose that $S(\cdot)$ is a sufficient statistic. If $S(Y_1) = S(Y_2)$ then Y_1 and Y_2 contain the same evidence with respect to θ .

Likelihood Principle

The combination of the quite reasonable Conditionality Principle and the Sufficiency Principle lead to the more controversial Likelihood Principle (see discussion in Robert (1994)).

Likelihood Principle: All the information about an unknown parameter θ obtainable from an experiment is contained in the likelihood function of θ given the data. Two likelihood functions for θ (from the same or different experiments) contain the same information about θ if they are proportional to another.

Frequentist maximum-likelihood estimation and inference typically violates the LP!

Bayesian methods do not

Bayesian Models

A Bayesian model consists of:

- ▶ parametric probability distribution for the data, which we will characterize by the density $p(Y^T | \theta)$
- prior distribution $p(\theta)$.

The density $p(Y^T|\theta)$ interpreted as a function of θ with fixed Y^T is the likelihood function.

The posterior distribution of the parameter θ , that is, the conditional distribution of θ given Y_T , can be obtained through Bayes theorem:

$$p(\theta|Y^{T}) = \frac{p(Y^{T}|\theta)p(\theta)}{\int p(Y^{T}|\theta)p(\theta)d\theta}$$

Bayesian Models continued

- can interpret this formula as an inversion of probabilities.
- think of the parameter θ as "cause" and the data Y^T as "effect"
- formula allows the calculation of the probability of a particular "cause" given the observed "effect" based on

the probability of the "effect" given the possible "causes"

Unlike in the frequentist framework, the parameter $\boldsymbol{\theta}$ is regarded as a random variable.

This does, however, not imply that Bayesians consider parameters to be determined in a random experiment.

The calculus of probability is used to characterize the state of knowledge

Any inference in a Bayesian framework is to some extent sensitive to the choice of prior distribution $p(\theta)$.

The prior reflects the initial state of mind of an individual and is therefore "subjective"

Many econometricians believe that the result of a scientific inquiry should not depend on the subjective beliefs and very sceptical of Bayesian methods.

But all analysis involves some subjective choices!

Introduction to Bayesian Statistics

- denote the sample space by \mathcal{Y} with elements Y^T .
- Probability distribution P will be defined on the product space Θ ⊗ 𝒴.
- ▶ The conditional distribution of θ given Y^T is denoted by P_{Y^T}
- P_{θ} denotes the conditional distribution of Y^{T} given θ

An Example

The parameter space is $\Theta = \{0, 1\}$,

the sample space is $\mathcal{Y} = \{0, 1, 2, 3, 4\}.$

	0	1	2	3	4
$P_{\theta=0}(Y)$.75	.140	.04	.037	.033
$P_{\theta=1}(Y)$.70	.251	.04	.005	.004

Suppose we consider $\theta = 0$ and $\theta = 1$ as equally likely a priori. Moreover, suppose that the observed value is Y = 1. The marginal probability of Y = 1 is

$$P\{Y = 1|\theta = 0\}P\{\theta = 0\} + P\{Y = 1|\theta = 1\}P\{\theta = 1\}$$

= 0.140 \cdot 0.5 + 0.251 \cdot 0.5 = 0.1955 (1)

The posterior probabilities for θ being zero or one are

$$P\{\theta = 0 | Y = 1\} = \frac{P\{Y = 1 | \theta = 0\} P\{\theta = 0\}}{P\{Y = 1\}} = \frac{0.07}{0.1955} = 0.358$$
$$P\{\theta = 1 | Y = 1\} = \frac{P\{Y = 1 | \theta = 1\} P\{\theta = 1\}}{P\{Y = 1\}} = \frac{0.1255}{0.1955} = 0.642$$

Thus, the observation Y = 1 provides evidence in favor of $\theta = 1$.

Example 2

Consider the linear regression model:

$$y_t = x'_t \theta + u_t, \quad u_t \sim iid\mathcal{N}(0,1), \tag{2}$$

which can be written in matrix form as $Y = X\theta + U$. We assume that $X'X/T \xrightarrow{p} Q_{XX}$ and $X'Y \xrightarrow{p} Q_{XY} = Q_{XX}\theta$. The dimension of θ is k. The likelihood function is of the form

$$p(Y|X,\theta) = (2\pi)^{-T/2} \exp\left\{Y - X\theta\right)'(Y - X\theta)\right\}.$$
 (3)

Suppose the prior distribution is of the form

$$\theta \sim \mathcal{N}\left(\mathbf{0}_{k\times 1}, \tau^2 \mathcal{I}_{k\times k}\right)$$
(4)

with density

$$p(\theta) = (2\pi\tau^2)^{-k/2} \exp\left\{-\frac{1}{2\tau^2}\theta'\theta\right\}$$
(5)

For small values of τ the prior concentrates near zero, whereas for larger values of τ it is more diffuse.

According to Bayes Theorem the posterior distribution of θ is proportional to the product of prior density and likelihood function

$$p(\theta|Y,X) \propto p(\theta)p(Y|X,\theta).$$
(6)

The right-hand-side is given by

$$p(\theta)p(Y|X,\theta) \propto (2\pi)^{-\frac{T+k}{2}} \tau^{-k} \exp\left\{-\frac{1}{2}[Y'Y - \theta'X'Y - Y'X\theta - \theta'X'Z - \tau^{-2}\theta'\theta]\right\}.$$
(7)

The exponential term can be rewritten as follows

$$Y'Y - \theta'X'Y - Y'X\theta - \theta'X'X\theta - \tau^{-2}\theta'\theta$$

$$= Y'Y - \theta'X'Y - Y'X\theta + \theta'(X'X + \tau^{-2}\mathcal{I})\theta \qquad (8)$$

$$= \left(\theta - (X'X + \tau^{-2}\mathcal{I})^{-1}X'Y\right)'\left(X'X + \tau^{-2}\mathcal{I}\right)$$

$$\left(\theta - (X'X + \tau^{-2}\mathcal{I})^{-1}X'Y\right)$$

$$+ Y'Y - Y'X(X'X + \tau^{-2}\mathcal{I})^{-1}X'Y.$$

Thus, the exponential term is a quadratic function of θ .

The exponential term is a quadratic function of θ . This information suffices to deduce that the posterior distribution of θ must be a multivariate normal distribution

$$\theta|Y, X \sim \mathcal{N}(\tilde{\theta}_T, \tilde{V}_T)$$
 (9)

with mean and covariance

$$\tilde{\theta}_{\mathcal{T}} = (X'X + \tau^{-2}\mathcal{I})^{-1}X'Y$$
(10)

$$\tilde{V}_{\mathcal{T}} = (X'X + \tau^{-2}\mathcal{I})^{-1}.$$
 (11)

The maximum likelihood estimator for this problem is $\hat{\theta}_{mle} = (X'X)^{-1}X'Y$ and its asymptotic (frequentist) sampling variance is $T^{-1}Q_{XX}^{-1}$.

- Assumption that both likelihood function and prior are Gaussian made the derivation of the posterior simple.
- ► The pair of prior and likelihood is called conjugate
- leads to a posterior distribution that is from the same family

Takeaway

As $\tau \longrightarrow \infty$ the prior becomes more and more diffuse and the posterior distribution becomes more similar to the sampling distribution of $\hat{\theta}_{mle}|\theta$:

$$\theta|Y, X \stackrel{approx}{\sim} \mathcal{N}\left(\hat{\theta}_{mle}, (X'X)^{-1}\right).$$
 (12)

If $\tau \longrightarrow 0$ the prior becomes dogmatic and the sample information is dominated by the prior information. The posterior converges to a point mass that concentrates at $\theta = 0$.

In large samples (fixed τ , $T \longrightarrow \infty$) the effect of the prior becomes negligibleand the sample information dominates

$$\theta|Y, X \stackrel{approx}{\sim} \mathcal{N}\left(\hat{\theta}_{mle}, T^{-1}Q_{XX}^{-1}\right). \quad \Box$$
 (13)

Estimation and Inference

- In principle, all the information with respect to θ is summarized in the posterior p(θ|Y) and we could simply report the posterior density to our audience.
- However, in many situations our audience prefers results in terms of point estimates and confidence intervals, rather than in terms of a probability density.
- we might be interested to answer questions of the form: do the data favor model M₁ or M₂?

Adopt a decision theoretic approach

Decision Theoretic Approach

decision rule $\delta(Y^T)$ that maps observations into decisions, and a loss function $L(\theta, \delta)$ according to which the decisions are evaluated.

$$\begin{aligned} \delta(Y^{T}) &: & \mathcal{Y} \mapsto \mathcal{D} \\ L(\theta, \delta) &: & \Theta \otimes \mathcal{D} \mapsto R^{+} \end{aligned} \tag{14}$$

 ${\cal D}$ denotes the decision space.

The goal is to find decisions that minimize the posterior expected loss $E_{Y^T}[L(\theta, \delta(Y^T))]$.

The expectation is taken conditional on the data x, and integrates out the parameter θ .

the goal is to construct a point estimate $\delta(Y^T)$ of θ . It involves two steps:

- Find the posterior $p(\theta|Y^T)$.
- Determine the optimal decision $\delta(Y^T)$.

The optimal decision depends on the loss function $L(\theta, \delta(Y^T))$.

Consider the zero-one loss function

$$L(\theta, \delta) = \left\{ \begin{array}{cc} 0 & \delta = \theta \\ 1 & \delta \neq \theta \end{array} \right\}.$$
 (16)

The posterior expected loss is $E_Y[L(\theta, \delta)] = 1 - E_Y\{\theta = \delta\}$ The optimal decision rule is

$$\delta = \operatorname{argmax}_{\theta' \in \Theta} P_{Y}\{\theta = \theta'\}$$
(17)

the point estimator under the zero-one loss is equal to the parameter value that has the highest posterior probability. We showed that

$$P\{\theta = 0 | Y = 1\} = 0.358$$
(18)
$$P\{\theta = 1 | Y = 1\} = 0.642$$
(19)

Thus $\delta(Y = 1) = 1$.

The quadratic loss function is of the form $L(\theta, \delta) = (\theta - \delta)^2$

The optimal decision rule is obtained by minimizing

$$\min_{\delta \in \mathcal{D}} E_{\mathbf{Y}^{\mathsf{T}}}[(\theta - \delta)^2]$$
(20)

It can be easily verified that the solution to the minimization problem is of the form $\delta(Y^T) = E_{Y^T}[\theta]$.

Thus, the posterior mean $\tilde{\theta}_T$ is the optimal point predictor under quadratic loss.

Asymptotically

Suppose data are generated from the model $y_t = x'_t \theta_0 + u_t$. Asymptotically the Bayes estimator converges to the "true" parameter θ_0

$$\widetilde{\theta}_{\mathcal{T}} = (X'X + \tau^{-2}\mathcal{I})^{-1}X'Y \qquad (21)$$

$$= \theta_0 + \left(\frac{1}{\mathcal{T}}X'X + \frac{1}{\tau^2\mathcal{T}}\mathcal{I}\right)^{-1}\left(\frac{1}{\mathcal{T}}X'U\right)$$

$$\xrightarrow{P} \theta_0$$

The disagreement between two Bayesians who have different priors will asymptotically vanish. \Box

Testing Theory

Consider the hypothesis test of $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_1$ where $\Theta_1 = \Theta/\Theta_0$.

Hypothesis testing can be interpreted as estimating the value of the indicator function $\{\theta \in \Theta_0\}$.

Consider the loss function

$$L(\theta, \delta) = \begin{cases} 0 & \delta = \{\theta \in \Theta_0\} & \text{correct decision} \\ a_0 & \delta = 0, \ \theta \in \Theta_0 & \text{Type 1 error} \\ a_1 & \delta = 1, \ \theta \in \Theta_1 & \text{Type 2 error} \end{cases}$$
(22)

Note that the parameters a_1 and a_2 are part of the econometricians preferences.

Optimal Decision Rule

$$\delta(Y^{T}) = \begin{cases} 1 & P_{Y^{T}} \{ \theta \in \Theta_{0} \} \ge a_{1}/(a_{0} + a_{1}) \\ 0 & \text{otherwise} \end{cases}$$
(23)

The expected loss is

 $E_{Y^{T}}L(\theta, \delta) = \{\delta = 0\}a_{0}P_{Y^{T}}\{\theta \in \Theta_{0}\} + \{\delta = 1\}a_{1}[1 - P_{Y^{T}}\{\theta \in \Theta_{0}\}]$ Thus, one should accept the hypothesis $\theta \in \Theta_{0}$ (choose $\delta = 1$) if

$$a_1 P_{\mathbf{Y}^{\mathsf{T}}} \{ \theta \in \Theta_1 \} = a_1 [1 - P_{\mathbf{Y}^{\mathsf{T}}} \{ \theta \in \Theta_0 \}] \le a_0 P_{\mathbf{Y}^{\mathsf{T}}} \{ \theta \in \Theta_0 \}$$
(24)

Bayes Factors: ratio of posterior probabilities and prior probabilities in favor of that hypothesis:

$$B(Y^{T}) = \frac{\text{Posterior Odds}}{\text{Prior Odds}} = \frac{P_{Y^{T}}\{\theta \in \Theta_{0}\}/P_{Y^{T}}\{\theta \in \Theta_{1}\}}{P\{\theta \in \Theta_{0}\}/P\{\theta \in \Theta_{1}\}} \quad (25)$$

Suppose the observed value of Y is 2. Note that

$$P_{\theta=0}\{Y \ge 2\} = 0.110$$
(26)
$$P_{\theta=1}\{Y \ge 2\} = 0.049$$
(27)

The frequentist interpretation of this result would be that there is significant evidence against $H_0: \theta = 1$ at the 5 percent level.

Frequentist rejections are based on unlikely events that did not occur!!

The Bayesian answers in terms of posterior odds is

$$\frac{P_{Y=2}\{\theta=0\}}{P_{Y=2}\{\theta=1\}} = 1$$
(28)

and in terms of the Bayes Factor B(Y) = 1. Y = 2 does not favor one versus the other model.

Suppose we only have one regressor k = 1.

Consider the hypothesis $H_0: \theta < 0$ versus $H_1: \theta \ge 0$. Then,

$$P_{Y^{T}}\{\theta < 0\} = P\left\{\frac{\theta - \tilde{\theta}_{T}}{\sqrt{\tilde{V}_{T}}} < -\frac{\tilde{\theta}_{T}}{\sqrt{\tilde{V}_{T}}}\right\} = \Phi\left(-\tilde{\theta}_{T}/\sqrt{\tilde{V}_{T}}\right)$$
(29)

where $\Phi(\cdot)$ denotes the cdf of a $\mathcal{N}(0,1)$. Suppose that $a_0 = a_1 = 1$

 H_0 is accepted if

$$\Phi\left(-\tilde{ heta}_{T}/\sqrt{\tilde{V}_{T}}
ight) \ge 1/2 \quad ext{or} \quad \tilde{ heta}_{T} < 0$$
 (30)

Suppose that $y_t = x_t \theta_0 + u_t$. Note that

$$\frac{\tilde{\theta}_{T}}{\sqrt{\tilde{V}_{T}}} = \sqrt{\left(\frac{1}{\tau^{2}} + \sum x_{t}^{2}\right)^{-1}} \sum x_{t} y_{t} \qquad (31)$$

$$= \sqrt{T} \theta_{0} \frac{\frac{1}{T} \sum x_{t}^{2}}{\sqrt{\frac{1}{T} \sum x_{t}^{2} + \frac{1}{\tau^{2}T}}} + \frac{\frac{1}{\sqrt{T}} \sum x_{t} u_{t}}{\sqrt{\frac{1}{T} \sum x_{t}^{2} + \frac{1}{\tau^{2}T}}} (32)$$

 $\tilde{\theta}_T/\sqrt{\tilde{V}_T}$ diverges to $+\infty$ if $\theta_0 > 0$ and $P_{Y^T}\{\theta < 0\}$ converges to zero.

Vice versa, if $\theta_0 < 0$ then $\tilde{\theta}_T / \sqrt{\tilde{V}_T}$ diverges to $-\infty$ and $P_{Y^T} \{\theta < 0\}$ converges to one.

Thus for almost all values of θ_0 (except $\theta_0 = 0$) the Bayesian test will provide the correct answer asymptotically.

Point Hypotheses

Suppose in the context of Example² we would like to test $H_0: \theta = 0$ versus $H_0: \theta \neq 0$.

Since $P\{\theta = 0\} = 0$ it follows that $P_{Y^T}\{\theta = 0\} = 0$ and the null hypothesis is never accepted!

This observations raises the question: are point hypotheses realistic?

Only, if one is willing to place positive probability λ on the event that the null hypothesis is true.

A modification of the prior

Consider the modified prior

$$p^*(heta) = \lambda \Delta [\{ heta = 0\}] + (1 - \lambda) p(heta)$$

where $\Delta[\{\theta = 0\}]$ is a point mass or dirac function.

The marginal density of Y^T can be derived as follows

$$\int p(Y^{T}|\theta)p^{*}(\theta)d\theta = \lambda \int p(Y^{T}|\theta)\Delta[\{\theta=0\}]d\theta$$
$$+(1-\lambda) \int p(Y^{T}|\theta)p(\theta)d\theta$$
$$= \lambda \int p(Y^{T}|0)\Delta[\{\theta=0\}]d\theta$$
$$+(1-\lambda) \int p(Y^{T}|\theta)p(\theta)d\theta$$
$$= \lambda p(Y^{T}|0) + (1-\lambda) \int p(Y^{T}|\theta)p(\theta)d\theta$$

Evidence for $\theta = 0$

}

The posterior probability of $\theta = 0$ is given by {

$$P_{YT} \{\theta = 0\} = \lim_{\epsilon \to 0} P_{YT} \{0 \le \theta \le \epsilon\}$$

$$= \lim_{\epsilon \to 0} \frac{\lambda \int_{0}^{\epsilon} p(Y^{T} | \theta) \Delta[\{\theta = 0\}] d\theta + (1 - \lambda) \int_{0}^{\epsilon} p(Y^{T} | \theta) p(\theta) d\theta}{\lambda p(Y^{T} | 0) + (1 - \lambda) \int p(Y^{T} | \theta) p(\theta) d\theta}$$

$$= \frac{\lambda p(Y^{T} | 0)}{\lambda p(Y^{T} | 0) + (1 - \lambda) \int p(Y^{T} | \theta) p(\theta) d\theta}.$$
(33)
(34)

Assume that $\lambda = 1/2$. In order to obtain the posterior probability that $\theta = 0$ we have to evaluate

$$p(Y|X, \theta = 0) = (2\pi)^{-T/2} \exp\left\{-\frac{1}{2}Y'Y\right\}$$
 (35)

and calculate the marginal data density

$$p(Y|X) = \int p(Y|X,\theta)p(\theta)d\theta.$$
 (36)

Typically, this is a pain! However, since everything is normal here, we can show:

$$p(Y|X) = (2\pi)^{-T/2} \tau^{-k} |X'X + \tau^{-2}|^{-1/2} \\ \times \exp\left\{-\frac{1}{2}[Y'Y - Y'X(X'X + \tau^{-2}\mathcal{I})^{-1}X'Y]\right\}.$$

Posterior Odds

the posterior odds ratio in favor of the null hypothesis is given by

$$\frac{P_{Y^{\tau}}\{\theta = 0\}}{P_{Y^{\tau}}\{\theta \neq 0\}} = \tau^{k} |X'X + \tau^{-2}|^{1/2}$$
$$\times \exp\left\{-\frac{1}{2}[Y'X(X'X + \tau^{-2}\mathcal{I})^{-1}X'Y]\right\}$$
(37)

Taking logs and standardizing the sums by T^{-1} yields

$$\ln\left[\frac{P_{Y^{T}}\{\theta=0\}}{P_{Y^{T}}\{\theta\neq0\}}\right] = -\frac{T}{2}\left(\frac{1}{T}\sum x_{t}y_{t}\right)'\left(\frac{1}{T}\sum x_{t}x_{t}'+\frac{1}{\tau^{2}T}\right)^{-1}$$

$$\times \left(\frac{1}{T}\sum x_t y_t\right) + \frac{k}{2}\ln T + \frac{1}{2}\ln \left|\frac{1}{T}\sum x_t x_t' + \frac{1}{\tau^2 T}\right| + k\ln \tau$$

Assessing Posterior Odds

Assume that Data Were Generated from $y_t = x'_t \theta_0 + u_t$.

$$\begin{aligned} Y'X(X'X + \tau^{-2})^{-1}X'Y \\ &= \theta_0'X'X(X'X + \tau^{-2})^{-1}X'X\theta_0 + U'X(X'X + \tau^{-2})^{-1}X'U \\ &+ U'X(X'X + \tau^{-2})^{-1}X'X\theta_0 + \theta_0'X(X'X + \tau^{-2})^{-1}X'U \\ &= T\theta_0'\Big(\frac{1}{T}\sum_{t}x_tx_t'\Big)^{-1}\theta_0 + \sqrt{T}2\Big(\frac{1}{\sqrt{T}}\sum_{t}x_tu_t\Big)'\theta_0 \\ &+ \Big(\frac{1}{\sqrt{T}}\sum_{t}x_tu_t\Big)'\Big(\frac{1}{T}\sum_{t}x_tx_t'\Big)^{-1}\Big(\frac{1}{\sqrt{T}}\sum_{t}x_tu_t\Big) + O_p(1). \end{aligned}$$

Asymptotics

If the null hypothesis is satisfied $\theta_0 = 0$ then

$$\ln\left[\frac{P_{Y^{T}}\{\theta=0\}}{P_{Y^{T}}\{\theta\neq0\}}\right] = \frac{k}{2}\ln T + small \longrightarrow +\infty.$$
(38)

That is, the posterior odds in favor of the null hypothesis converge to infinity and the posterior probability of $\theta = 0$ converges to one.

On the other hand, if the alternative hypothesis is true $\theta_0 \neq 0$ then

$$\ln\left[\frac{P_{Y^{T}}\{\theta=0\}}{P_{Y^{T}}\{\theta\neq0\}}\right] = -\frac{T}{2}\theta_{0}'\left(\frac{1}{T}\sum x_{t}x_{t}'\right)^{-1}\theta_{0} + small \longrightarrow -\infty.$$

and the posterior odds converge to zero, which implies that the posterior probability of the null hypothesis being true converges to zero.

Bayesian test is consistent in the following sense.

- If the null hypothesis is "true" then the posterior probability of H₀ converges in probability to one as T → ∞.
- If the null hypothesis is false then the posterior probability of H₀ tends to zero

Thus, asymptotically the Bayesian test procedure has no "Type 1" error.

Understanding this

consider the marginal data density p(Y|X) in Example². The terms that asymptotically dominate are

$$\ln p(Y|X) = -\frac{T}{2}\ln(2\pi) - \frac{1}{2}(Y'Y - Y'X(X'X)^{-1}X'Y) - \frac{k}{2}\ln T + sk$$
$$= \ln p(Y|X, \hat{\theta}_{m/e}) - \frac{k}{2}\ln T + small$$
$$= \text{maximized likelihood function - penalty.}$$

The marginal data density has the form of a penalized likelihood function.

The maximized likelihood function captures the goodness-of-fit of the regression model in which θ is freely estimated.

The second term penalizes the dimensionality to avoid overfitting the data.

Confidence Sets

The frequentist definition is that $C_{Y^T} \subseteq \Theta$ is an α confidence region if

$$P_{\theta}\{\theta \in C_{Y^{T}}\} \ge 1 - \alpha \quad \forall \theta \in \Theta$$
(41)

A Bayesian confidence set is defined as follows. ${\it C}_{{\it Y}^{{\it T}}}\subseteq \Theta$ is α credible if

$$P_{Y^{\mathsf{T}}}\{\theta \in C_{Y^{\mathsf{T}}}\} \ge 1 - \alpha \tag{42}$$

A highest posterior density region (HPD) is of the form

$$C_{Y^{T}} = \{\theta : p(\theta | Y^{T}) \ge k_{\alpha}\}$$
(43)

where k_{α} is the largest bound such that

$$P_{Y^{\mathcal{T}}}\{\theta \in C_{Y^{\mathcal{T}}}\} \ge 1 - \alpha$$

The HPD regions have the smallest size among all α credible regions of the parameter space Θ .

The Bayesian highest posterior density region with coverage $1-\alpha$ for θ_i is of the form

$$C_{\mathbf{Y}^{\mathcal{T}}} = \left[\tilde{\theta}_{\mathcal{T},j} - z_{crit} [\tilde{V}_{\mathcal{T}}]_{jj}^{1/2} \le \theta_j \le \tilde{\theta}_{\mathcal{T},j} + z_{crit} [\tilde{V}_{\mathcal{T}}]_{jj}^{1/2}\right]$$

where $[\tilde{V}_T]_{jj}$ is the j'th diagonal element of \tilde{V}_T , and z_{crit} is the $\alpha/2$ critical value of a $\mathcal{N}(0, 1)$.

In the Gaussian linear regression model the Bayesian interval is very similar to the classical confidence interval, but its statistical interpretation is quite different. \Box