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Background
▶ Overview: Chapter 10 from cite:Hamilton.

▶ Technical Details: cite:Lutkepohl1993

▶ Other stuff: There is a new book by cite:kilianlutkepohl2017 – I haven’t
read it yet.

▶ Some surveys: cite:Stock2001, cite:Ramey2016.



VARs
VARs have become an important tool for empirical macroeconomic
research.
▶ Reduced Form representations of the data that summarize regular

features and are suitable to conduct forecasts.
▶ Structural economic model can give some interpretation to a vector

autoregression.
We’ll talk about both today.



Some Theoretical Properties of VARs
A vector autoregression is a generalization of the AR(p) model to the
multivariate case:

yt = Φ0 +Φ1yt−1 + . . .+Φpyt−p + ut (1)

The random variable yt is now a n× 1 random vector that takes values in
Rn.
For a theoretical analysis, it is often convenient to express the VAR(p) in
the so-called companion form.
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Let ξt = [y ′
t , y

′
t−1, . . . , y

′
t−p+1]

′. The VAR can be rewritten as

ξt = F0 + F1ξt−1 + νt (2)

where the definitions of F0, F1, and νt can be deduced from the previous
slide.
define the n × np matrix Mn = [I , 0] where I is an n × n identity matrix.

It can be easily verified that yt = Mnξt .

The companion form is useful in two respects:
▶ to define stationarity in the context of a VAR
▶ to convince ourselves that without loss of much generality we can

restrict econometric analyses to VAR(1) specifications.

Result For a vector autoregression to be covariance stationary it is
necessary that all eigenvalues of the matrix F1 are less than one in
absolute value. □



Example
Consider the univariate AR(2) process

yt = ϕ1yt−1 + ϕ2yt−2 + ut

The AR(2) process can be written in companion form as a VAR(1) where
ξt = [yt , yt−1]

′ and

F1 =

[
ϕ1 ϕ2
1 0

]
The eigenvalues λ of the matrix F1 satisfy the condition

det(F1 − λI ) = 0 ⇐⇒ (ϕ1 − λ)(−λ)− ϕ2 = 0

Provided that λ ̸= 0 the equation can be rewritten as

0 = 1 − ϕ1
1
λ
− ϕ2

1
λ2

Thus, the condition |λ| < 1 is, at least in this example, equivalent to the
condition that all the roots of the polynomial ϕ(z) are greater than one
in absolute value. A generalization of this example can be found in
Hamilton (1994, Chapter 1). □



VAR(p)
Consider a VAR(p). The expected value of yt has to satisfy the vector
difference equation

E[yt ] = Φ0 +Φ1E[yt−1] + . . .ΦpE[yt−p] for all t (3)

If the eigenvalues of F1 are all less than one in absolute values and the
VAR was initialized in the infinite past, then the expected value is given
by

E[yt ] = [I − Φ1 − . . .Φt ]
−1Φ0 (4)

To calculate the autocovariances we will assume that Φ0 = 0. Consider
the companion form

ξt = F1ξt−1 + νt (5)

If the eigenvalues of F1 are all less than one in absolute value and the
VAR was initialized in the infinite past, than the autocovariance matrix of
order zero has to satisfy the equation

Γξξ,0 = E[ξtξ′t ] = F1Γξξ,0F
′
1 + E[νtν′t ] (6)

Obtaining a closed form solution for Γξξ,0 is a bit more complicated than
in the univariate AR(1) case.



Some Facts

Definition
Let A and B be 2 × 2 matrices with the elements

A =

[
a11 a12
a21 a22

]
, B =

[
b11 b12
b21 b22

]
The vec operator is defined as the operator that stacks the columns of a
matrix, that is,

vec(A) = [a11, a21, a12, a22]
′

and the Kronecker product is defined as

A⊗ B =

[
a11B a12B
a21B a22B

]
□

Lemma
Let A, B, C be matrices whose dimension are such that the product
ABC exists. Then vec(ABC ) = (C ′ ⊗ A)vec(B) □



VAR(p), continued
A closed form solution for the elements of the covariance matrix of ξt can
be obtained as follows

vec(Γξξ,0) = (F1 ⊗ F1)vec(Γξξ,0) + vec(E[νtν′t ])
= [I − (F1 ⊗ F1)]

−1vec(E[νtν′t ]) (7)

Since

E[ξtξ′t−h] = FE[ξt−1ξ
′
t−h] + E[νtξ′t−h] (8)

we can deduce that

Γξξ,h = F h
1 Γξξ,0 (9)

To obtain the autocovariance Γξξ,−h we have to keep track of a transpose
in the general matrix case:

Γξξ,−h = E[ξt−hξ
′
t ] =

[
E[ξtξ′t−h]

]′
= Γ′ξξ,h (10)



VAR(p), continued
Once we have calculate that autocovariances for the companion form
process ξt it is straightforward to obtain the autocovariances for the yt
process. Since yt = Mnξt it follows that

Γyy ,h = E[yty ′
t−h] = E[Mnξtξ

′
t−hM

′
n] = MnΓξξ,hM

′
n (11)

Result: Consider the vector autoregression

yt = Φ0 +Φ1yt−1 + . . .+Φpyt−p + ut

where ut ∼ iidN (0,Σu) with companion form

ξt = F0 + F1ξt−1 + νt

Suppose that the eigenvalues of F1 are all less than one in absolute
values and that the vector autoregression was initialized in the infinite
past. Under these assumptions the vector process yt is covariance
stationary with the moments

E[yt ] = [I − Φ1 − . . .Φt ]
−1Φ0 (12)

Γyy ,h = MnΓξξ,hM
′
n ∀h (13)

where

vec(Γξξ,0) = [I − (F1 ⊗ F1)]
−1vec(E[νtν′t ]) (14)

Γξξ,h = F h
1 Γξξ,0 h > 0 □ (15)



The Likelihood Function
We will now derive the likelihood function for a Gaussian VAR(p),
conditional on initial observations y0, . . . , y−p+1. The density of yt
conditional on yt−1, yt−2, . . . and the coefficient matrices Φ0,Φ1, . . . ,Σ is
of the form

p(yt |Y t−1,Φ0, . . . ,Σ) ∝ |Σ|−1/2 exp

{
− 1

2
(yt − Φ0 − Φ1yt−1 − . . .− Φpyt−p)

′

×Σ−1(yt − Φ0 − Φ1yt−1 − . . .− Φpyt−p)

}
(16)

Define the (np + 1)× 1 vector xt as

xt = [1, y ′
t−1, . . . , y

′
t−p]

′

Moreover, define the matrixes

Y =

 y ′
1
...
y ′
T

 , X =

 x ′1
...
x ′T

 , Φ = [Φ0,Φ1, . . . ,Φp]
′



The conditional density of yt can be written in more compact notation as

p(yt |Y t−1,Φ,Σ) ∝ |Σ|−1/2 exp

{
−1

2
(y ′

t − x ′tΦ)Σ
−1(y ′

t − x ′tΦ)
′
}

(17)

To manipulate the density we will use some matrix algebra facts.

Facts:
1. Let a be a n × 1 vector, B be a symmetric positive definite n × n

matrix, and tr the trace operator that sums the diagonal elements of
a matrix. Then

a′Ba = tr [Baa′]

2. Let A and B be two n × n matrices, then

tr [A+ B] = tr [A] + tr [B]



In a first step, we will replace the inner product in the expression for the
conditional density by the trace of the outer product

p(yt |Y t−1,Φ,Σ) ∝ |Σ|−1/2 exp

{
−1

2
tr [Σ−1(y ′

t − x ′tΦ)
′(y ′

t − x ′tΦ)]

}
(18)

In the second step, we will take the product of the conditional densities
of y1, . . . , yT to obtain the joint density. Let Y0 be a vector with initial
observations

p(Y |Φ,Σ,Y0) =
T∏
t=1

p(yt |Y t−1,Y0,Φ,Σ)

∝ |Σ|−T/2 exp

{
−1

2

T∑
t=1

tr [Σ−1(y ′
t − x ′tΦ)

′(y ′
t − x ′tΦ)]

}

∝ |Σ|−T/2 exp

{
−1

2
tr

[
Σ−1

T∑
t=1

(y ′
t − x ′tΦ)

′(y ′
t − x ′tΦ)

]}

∝ |Σ|−T/2 exp

{
−1

2
tr [Σ−1(Y − XΦ)′(Y − XΦ)]

}
(19)



Define the “OLS” estimator

Φ̂ = (X ′X )−1X ′Y (20)

and the sum of squared OLS residual matrix

S = (Y − X Φ̂)′(Y − X Φ̂) (21)

It can be verified that

(Y − XΦ)′(Y − XΦ) = S + (Φ− Φ̂)′X ′X (Φ− Φ̂) (22)

This leads to the following representation of the likelihood function

p(Y |Φ,Σ,Y0) ∝ |Σ|−T/2 exp

{
−1

2
tr [Σ−1S ]

}
× exp

{
−1

2
tr [Σ−1(Φ− Φ̂)′X ′X (Φ− Φ̂)]

}
(23)



Alternative Representation
Let β = vec(Φ) and β̂ = vec(Φ̂). It can be verified that

tr [Σ−1(Φ− Φ̂)′X ′X (Φ− Φ̂)] = (β − β̂)′[Σ⊗ (X ′X )−1]−1(β − β̂) (24)

and the likelihood function has the alternative representation

p(Y |Φ,Σ,Y0) ∝ |Σ|−T/2 exp

{
−1

2
tr [Σ−1S ]

}
× exp

{
−1

2
(β − β̂)′[Σ⊗ (X ′X )−1]−1(β − β̂)

}



Inference
Above suggests we could estimate Φ and Σ via LS/MLE.

Consider a VAR(1) on the Output Gap, Inflation, and Interest Rate:
[1959:Q1-2004:Q4]
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MLE

Φ̂0 =

 0.44
0.24
0.24

 , Φ̂1 =

 0.93 −0.01 −0.07
0.07 0.84 0.07
0.08 0.09 0.91



Σ̂ =

 0.62 −0.04 0.24
−0.04 1.27 0.16
0.24 0.16 0.87


|eig(Φ̂1)| = [0.95, 0.95, 0.78] =⇒ stationary

Unconditional Mean

(I − Φ̂1)
−1Φ̂0 = [−0.54, 3.75, 6.09]



Impulse Response Function
Let’s that u1,t equals 1 in some period t. What does that mean for
t + 1, t + 2, . . .?
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Formally
IRF(h) = dyt+h

dut

Can get via MA(∞) representation

yt = Φ0 + ut +Φ1ut−1 +Φ2ut−2 + . . .

Identifies consequences of a 1 unit increase in innovation u1,t on
observables holding all innovations fixed.

Causality? Be careful. We’re in reduced-form. . .

Still, get a sense of dynamics of system.



How to pick lags of VAR?

Could use information criteria Akaike, Bayesian, Schwarz, . . . just like
OLS.

OTOH, hand isn’t it nice to use more lags = more complex dynamics,
MP “long and variable”

p = 1 p = 6
std(û1) 0.62 0.45
std(û2) 1.27 1.01
std(û3) 0.87 0.61

How to use more lags without overfitting?



Granger Causality
Economists often use regression results to make statements about causal
relationships between variables.
▶ Suppose we would like to examine the monetarist hypothesis that a

contraction of the money supply causes a decrease in aggregate
output.

▶ It is tempting to regress output on a measure of lagged money
supply and interpret a non-zero coefficient as “causal” relationship.

▶ Since this concept of causality is somewhat different from the usual
notion of causality it gets a new name.

Bivariate Granger Causality The random variable y2,t fails to Granger
cause the random variable y1,t if for all s > 0 the mean squared error of a
forecast of y1,t+s based on y1,t , y1,t−1, . . . is the same as the mean
squared error of a forecast that uses both y1,t , y1,t−1, . . . and
y2,t , y2,t−1, . . .. □



Example
Consider the bivariate VAR(2)[

y1,t
y2,t

]
=

[
ϕ
(0)
1

ϕ
(0)
2

]
+

[
ϕ
(1)
11 ϕ

(1)
12

ϕ
(1)
21 ϕ

(1)
22

] [
y1,t−1
y2,t−1

]
+ . . .+

[
ϕ
(p)
11 ϕ

(p)
12

ϕ
(p)
21 ϕ

(p)
22

] [
y1,t−p

y2,t−p

]
+

[
u1,t
u2,t

]
(25)

If y2,t fails to Granger cause y1,t , then it must be true that

ϕ
(1)
12 = ϕ

(2)
12 = . . . = ϕ

(p)
12 = 0 (26)

A discussion of Granger causality in the context of a VAR with more than
two variables can be found in Hamilton (1994). We will now examine
Granger causality in the context of forward looking behavior. Roughly
speaking:

The weather forecast Granger causes the weather, but shooting
the weatherman will not produce a sunny weekend. (Cochrane,
1994).



Example
Consider a investor who has the choice between a riskless bond that yields
a return r , and a risky asset that has a price pt and will pay dividends
dt+1 in the next period. In equilibrium under the absence of arbitrage

1 + r = Et

[
pt+1 + dt+1

pt

]
(27)

The forward solution of this difference equation implies that the price of
the risky asset is

pt = Et

[ ∞∑
τ=1

(
1

1 + r

)τ

dt+τ

]
(28)

Thus, according to the model, the stock price incorporates the market’s
best forecast of the present value of future dividends. If this forecast is
based on more information than past dividends alone, then stock prices
will Granger cause dividends, as investors try to anticipate movements in
dividends.



Example
Suppose that

dt = d + ut + δut−1 + νt (29)

where ut and νt are independent Gaussian iid series. Suppose that the
investor at time t knows values of current and past ut and νt ’s. The
forecast of dt+τ based on this information is given by

Et [dt+τ ] =

{
d + δut for τ = 1

d for τ = 2, 3, . . . (30)

Thus, the stock price is given by

pt =
d

r
+

δut
1 + r

(31)

which implies that

δut−1 = (1 + r)pt−1 − (1 + r)d/r (32)

The system can be written as a bivariate VAR[
pt
dt

]
=

[
d/r
−d/r

]
+

[
0 0

1 + r 0

] [
pt−1
dt−1

]
+

[
δut/(1 + r)
ut + νt

]
(33)



Upshot
▶ In this model, Granger causation runs the opposite direction from

the true causation.
▶ Dividends fail to “Granger-cause” prices, even though investors’

perceptions of dividends are the sole determinant of stock prices.
▶ On the other hand, prices do “Granger-cause” dividends, even

though the market’s evaluation of the stock in reality has no effect
on the dividend process. (Hamilton, 1994, Chapter 11).

How to think about causation?



A last word about cointegration
We will now analyze a simple bivariate system of cointegrated processes.
Consider the model

y1,t = γy2,t + u1,t (34)
y2,t = y2,t−1 + u2,t (35)

where [u1,t , u2,t ]
′ ∼ iid(0,Ω).

Clearly, y2,t is a random walk. Moreover, it can be easily verified that y1,t
follows a unit root process.

y1,t − y1,t−1 = γ(y2,t − y2,t−1) + u1,t − u1,t−1 (36)

Therefore,

y1,t = y1,t−1 + γu2,t + u1,t − u1,t−1 (37)

Thus, both y1,t and y2,t are integrated processes.



Model Continued
However, the linear combination

[1, −γ]

[
y1,t
y2,t

]
= y1,t − γy2,t = u1,t (38)

is stationary. Therefore, y1,t and y2,t are cointegrated.

The vector [1,−γ]′ is called the cointegrating vector.

Note that the cointegrating vector is only unique up to normalization.



Rewriting the Model
The model can be rewritten as a VAR(1)

yt = Φ1yt−1 + ϵt (39)

The elements of the matrix Φ1 and the definition of ϵt is given by[
y1,t
y2,t

]
=

[
0 γ
0 1

] [
y1,t−1
y2,t−1

]
+

[
u1,t + γu2,t

u2,t

]
(40)

The matrix Φ1 is of reduced rank in this example of cointegration. More
generally cointegrated system can be casted in the form of a vector
autoregression in levels of yt .

Although both y1,t and y2,t follow univariate random walks, the
cointegrated system cannot be expressed as a vector autoregression in
differences [∆y1,t ,∆y2,t ]

′. Consider[
∆y1,t
∆y2,t

]
=

[
1 − L γL

0 1

] [
u1,t
u2,t

]
= Θ(L)ut (41)

Since |Θ(1)| = 0 the moving average polynomial is not invertible and no
finite order VAR could describe ∆yt .



VECM
The cointegrated model can be written in the so-called vector error
correction model (VECM) form:[

∆y1,t
∆y2,t

]
=

[
−1
0

]([
1 −γ

] [ y1,t−1
y2,t−1

])
+

[
u1,t + γu2,t

u2,t

]
(42)

The term([
1 −γ

] [ y1,t−1
y2,t−1

])
= y1,t−1 − γy2,t−1 (43)

is called error correction term. In economic models it often reflects a
long-run equilibrium relationship such as a constant ratio of consumption
and output. If the economy is out of equilibrium in period t − 1, that is,
y1,t−1 − γy2,t−1 ̸= 0, then the economy adjusts toward its long-run
equilibrium and t−1[∆yt ] ̸= 0. If the “true” cointegrating vector is known,
then both the left-hand-side variables and the error correction term are
stationary.



Upshot
In practice, if one would like to model a bivariate vector process yt , it has
to be determined whether to fit

1. An unrestricted vector autoregression of the form
2. a vector autoregression in differences
3. or a vector error correction model (reduced rank regression)

How to pick:
▶ A likelihood ratio test or a Bayesian model selection criterion could

be used
▶ if the processes y1,t and y2,t are integrated the analysis of the

sampling distribution of the likelihood ratio test statistics is
complicated

▶ Johansen (1995) provides a nice summary of the relevant asymptotic
distribution theory.



SVARs
So far, we considered reduced form VARs, say,

yt = Φ1yt−1 + ut , E[utu′t ] = Σu (44)

in which the error terms ut have the interpretation of one-step ahead
forecast errors. If the eigenvalues of Φ1 are inside the unit-circle then yt
has the following moving-average (MA) representation in terms of ut :

yt = (I − Φ1L)
−1ut =

∞∑
j=0

Φj
1ut−j =

∞∑
j=0

Cjut−j (45)

Modern dynamic macro models suggest that the one-step ahead forecast
errors are functions of some fundamental shocks, such as technology
shocks, preference shocks, or monetary policy shocks.



Let ϵt a vector of such fundamental shocks and assume that E[ϵtϵ′t ] = I.
Moreover, assume that

ut = Φϵϵt . (46)

Then we can express the VAR in structural form as follows

yt = Φ1yt−1 +Φϵϵt (47)
Φ−1

ϵ yt = Φ−1
ϵ Φ1yt−1 + ϵt

The moving-average representation of yt in terms of the structural shocks
is given by

yt =
∞∑
j=0

Φj
1Φϵϵt−j =

∞∑
j=0

CjΦϵϵt−j . (48)



The moving-average representation of yt in terms of the structural shocks
is given by

yt =
∞∑
j=0

Φj
1Φϵϵt−j =

∞∑
j=0

CjΦϵϵt−j . (49)

For~(44) and~(47) the matrix Φϵ has to satisfy the restriction

ΦϵΦ
′
ϵ = Σu. (50)

Notice that the matrix Φϵ has n2 elements. The covariance relationship,
unfortunately, generates only n(n + 1)/2 restrictions and does not
uniquely determine Φϵ. This creates an identification problem since all we
can estimate from the data is Φ1 and Σu.



In order to make statements about the propagation of structural shocks
ϵt we have to make further assumptions. The papers by Cochrane
(1994), Christiano and Eichenbaum (1999), and Stock and Watson
(2001) survey such identifying assumptions. A cynical view of this
literature is the following:

1. Propose an identification scheme, that determines all elements of Φϵ.
2. Compute impulse response functions.
3. If impulse response functions are plausible, then stop; else, declare a

“puzzle” and return to 1.
Here are some famous “puzzles:”

1. “Liquidity Puzzle:” When identifying monetary policy shocks as
surprise changes in the stock of money one often finds that interest
rates fall when the money stock is lowered.

2. “Price Puzzle:” When identifying monetary policy shocks as surprise
changes in the Federal Funds Rate, one often finds that prices fall
after a drop in interest rates.

These “puzzles” are typically resolved by considering more elaborate
identification schemes.



Impulse Response Functions and Variance Decompositions
Impulse responses are defined as

∂yt+h

∂ϵ′t
= ChΦϵ (51)

and correspond to the MA coefficient matrices in the moving average
representation of yt in terms of structural shocks.
The covariance matrix of yt is given by

Γyy ,0 =
∞∑
j=0

CjΦϵIΦ′
ϵC

′
j (52)

Let I i be matrix for which element i , i is equal to one and all other
elements are equal to zero. Then we can define the contribution of the
i ’th structural shock to the variance of yt as

Γ
(i)
yy ,0 =

∞∑
j=0

CjΦϵI(i)Φ′
ϵC

′
j (53)

Thus the fraction of the variance of yl,t explained by shock i is

[Γ
(i)
yy ,0]ll/[Γyy ,0]ll .



We begin by decomposing the covariance matrix into the product of
lower triangular matrices (Cholesky Decomposition):

Σu = AA′, (54)

where A is lower triangular. If Σu is non-singular the decomposition is
unique. Let Ω be an orthonormal matrix, meaning that ΩΩ′ = Ω′Ω = I.
We can characterize the relationship between the reduced form and the
structural shocks as follows

ut = AΩϵt (55)

Notice that

E[utu′t ] = E[AΩϵtϵ′tΩ′A′] = AΩE[ϵtϵ′t ]Ω′A′ = AΩΩ′A′ = AA′ = Σu. (56)



In general, it is quite tedious to characterize the space of orthonormal
matrices. Let’s try for n = 2:

Ω(φ) =

[
cosφ − sinφ
sinφ cosφ

]
(57)

where φ ∈ (−π, π]. Notice that, for instance,

Ω(π/2) = −Ω(−π/2) (58)

which means that only the signs of the impulse responses change but not
the shape.

Let’s look at some famous identification schemes



Sims (1980)
Suppose that

yt =

[
Fed Funds Rate
Output Growth

]
, ϵt =

[
ϵR,t

ϵz,t

]
=

[
Monetary Policy Shock

Technology Shock

]
.

Moreover, we assume that the central bank does not react
contemporaneously to technology shocks because data on aggregate
output only become available with a one-quarter lag. This assumption
can be formalized through φ = 0. Then

ut =

[
a11 0
a21 a22

] [
ϵR,t

ϵz,t

]
. (59)

Further readings: cite:Sims1980.
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Blanchard and Quah (1989)
Now suppose that

yt =

[
Inflation

Output Growth

]
, ϵt =

[
ϵR,t

ϵz,t

]
=

[
Monetary Policy Shock

Technology Shock

]
Moreover,

yt = (
∞∑
j=0

CjL
j)ut = C (L)ut . (60)

Consider the following assumption: monetary policy shocks do not raise
output in the long-run. Let’s examine the moving average representation
of yt in terms of the structural shocks

yt =

[
c11(L) c12(L)
c21(L) c22(L)

] [
a11 0
a21 a22

] [
cosφ − sinφ
sinφ cosφ

] [
ϵR,t

ϵz,t

]
=

[
· ·

a11 cosφc21(L) + (a21 cosφ+ a22 sinφ)c22(L) ·

] [
ϵR,t

ϵz,t

]
=

[
d11(L) d12(L)
d21(L) d22(L)

] [
ϵR,t

ϵz,t

]



Suppose that in period t = 0 log output and log prices are equal to zero.
Then the log-level of output and prices in period t = T > 0 is given by

y c
T =

T∑
t=1

yt =
T∑
t=1

∞∑
j=0

Djϵt−j (61)

Now consider the derivative

∂y c
T

∂ϵ′1
=

T−1∑
j=0

Dj (62)

Letting T −→ ∞ gives us the long-run response of the level of prices and
output to the shock ϵ1:

∂y c
∞

∂ϵ′1
=

∞∑
j=0

Dj = D(1) (63)

Here, we want to restrict the long-run effect of monetary policy shocks
on output:

d21(1) = 0 (64)



This leads us to the equation

[a11c21(1) + a21c22(1)] cosφ+ a22c22(1) sinφ = 0. (65)

Notice that the equation has two solutions for φ ∈ (−π, π]. Under one
solution a positive monetary policy shock is contractionary, under the
other solution it is expansionary. The shape of the responses is, of
course, the same.







Sign Restrictions
Again consider

yt =

[
Inflation

Output Growth

]
, ϵt =

[
ϵR,t

ϵz,t

]
=

[
Monetary Policy Shock

Technology Shock

]
and our identification assumption is: upon impact, a monetary policy
shock raises both prices and output. It can be verified that

∂yt
∂ϵR,t

=

[
a11 cosφc11,1 + (a21 cosφ+ a22 sinφ)c12,1
a11 cosφc21,1 + (a21 cosφ+ a22 sinφ)c22,1

]
. (66)

Thus, we obtain the sign restrictions

0 < a11 cosφc11,1 + (a21 cosφ+ a22 sinφ)c12,1

0 < a11 cosφc21,1 + (a21 cosφ+ a22 sinφ)c22,1

which restrict φ to be in a certain subset of (−π, π] and will generate a
range of responses.
Further readings: cite:Canova2002, cite:Faust1998, cite:Uhlig2005.



Uhlig, 2005
▶ What is the effect of MP on Output?
▶ Let’s assume that after an MP shock Rt+k for k = 1, . . .K .
▶ How does it compare to the standard ordering?

Result: Monetary Policy does not effect output!



Sign Restrictions



Sign Restrictions



Cholesky



Is that the last word?
NO
▶ Can you verify sign restrictions?
▶ It’s hard to get (all) the right Omegas [cite:Arias2014]
▶ Other “reasonable” sign restrictions give different results?
▶ Are we back to “puzzle”?
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