
ECON 616: Machine Learning

Ed Herbst

Last Updated: March 13, 2025

Background

▶ Stuff written by economists: Varian (2014), Mullainathan and
Spiess (2017), Athey (2018)

▶ Useful books: Hastie, Tibshirani, and Friedman (2009),

▶ Gentle introduction: Machine Learning on
http://coursera.org; many other things on the internet (of
varying quality).

▶ Computation: scikit-learn (python).

http://coursera.org

“Machine Learning” definition

▶ Hard to define; context dependent;

▶ Athey (2018):
... a field that develops algorithms designed to applied to
datasets with the main areas of focus being prediction (re-
gression), classification, and clustering or grouping tasks.

▶ Broadly speaking, two branches:
▶ Supervised: dependent variables known (think predicting

output growth)
▶ Unsupervised: dependent variables unknown (think classifying

recessions)

A Dictionary

Econometrics ML
y︸︷︷︸

T×1

= {y1:T} Endogenous outcome

X︸︷︷︸
T×n

= {x1:T} Exogenous Feature

1 : T “in sample” “training”
T : T + V ??? not enough data! “validation”
T + V : T + V + O “out of sample” “testing”

Today I’ll concentrate on prediction (regression) problems.

ŷ = f (X ; θ)

Economists would call this modeling the conditional
expectation, MLers the hypothesis function.

It all starts with a loss funciton

Generally speaking, we can write (any) estimation problem as
essentially a loss minizimation problem.

Let L
L(ŷ , y) = L(f (X ; θ), y)

Be a loss function (sometimes called a “cost” function).

Estimation in ML: pick θ to minimize loss.

ML more concerned with minimizing my loss than inference on θ
per se.

Forget standard errors. . .

Gradient Descent
▶ In practice, it is often not possible to minimize the loss

function analytically.

▶ In fact, most machine learning models correspond to functions
f (·; θ) that are highly nonlinear in θ.

▶ In addition to an explosition of datasets, a large part of the
success of machine learning algorithms is the development of
robust minimization routines.

▶ The first one everyone learns is called gradient descent:

θ′ = θ + α
dL(ŷ , y)

dθ

▶ You can use this for OLS when N > T .

Example: Forecasting Inflation
Let’s consider forecasting (GDP deflator) inflation.

Linear Regression

▶ Consider forecasting inflation using only it’s lag and constant.
▶ Training sample: 1985-2000
▶ Testing sample: 2001-2015
▶ scikit-learn code

from sklearn.linear_model import LinearRegression
linear_model_univariate = LinearRegression()

train_start, train_end = ’1985’, ’2000’
inf[’inf_L1’] = inf.GDPDEF.shift(1)
inf = inf.dropna(how=’any’)
inftrain = inf[train_start:train_end]
Xtrain,ytrain = (inftrain.inf_L1.values.reshape(-1,1),

inftrain.inf)
fitted_ols = linear_model_univariate.fit(Xtrain,ytrain)

Many regressors
Let’s add the individual spf forecasts to our regression.

/home/eherbst/miniconda3/lib/python3.8/site-packages/openpyxl/worksheet/header_footer.py:48: UserWarning: Cannot parse header or footer so it will be ignored
warn("""Cannot parse header or footer so it will be ignored""")

Estimating this in scikit learn is easy

spf_flatted_zero = spf_flat.fillna(0.)

spfX = spf_flatted_zero[train_forecasters][train_start:train_end]
spfXtrain = np.c_[Xtrain, spfX]

linear_model_spf = LinearRegression()
fitted_ols_spf = linear_model_spf.fit(spfXtrain,ytrain)

Table: Mean Squared Errors

Train Test
LS-univariate 0.59 2.28
LS-SPF 0 2.1

Regularization
We’ve got way too many variables – our model does horrible out of
sample!

Their are many regularization techniques available for variable
selection

Conventional: AIC, BIC

Alternative approach: Penalized regression.

Consider the loss function:

L(ŷ , y) =
1

2T

T∑
t=1

(f (xt ; θ)− y)2 + λ

N∑
i=1

[
(1 − α)|θi |+ α|θi |2

]
.

This is called elastic net regression. When λ = 0, we’re back to
OLS.

Many special cases.

Ridge Regression

The ridge regression Hoerl and Kennard (2004) is special case
where α = 1.

Long (1940s) used in statistics and econometrics.

This is sometimes called (or is a special case of) “Tikhonov
regularization”

It’s an L2 penalty, so it’s won’t force parameters to be exactly
zero.

Can be formulatd as Bayesian linear regression.

from sklearn.linear_model import Ridge
fitted_ridge = Ridge().fit(spfXtrain,ytrain)

LS vs Ridge (λ = 1) Coefficients

Lasso Regression

Set α = 0
▶ This is an L1 penalty – forces small coefficients to exactly 0.

▶ Greatly reduces model complexity.

▶ Can you give economic interpretation to the parameters?

▶ Bayesian interpetation: Laplace prior in θ.

from sklearn.linear_model import Lasso
fitted_lasso = Lasso().fit(spfXtrain,ytrain)

LS vs Lasso (λ = 1) Coefficients

Picking λ
▶ Use “rule of thumb” given subject matter.
▶ Tradition validation: Use many λ on your test sample, Assess

accuracy of each on validation sample, pick one which gives
minimum loss.

▶ Cross validation:
1. Divide sample in K parts:
2. For each k ∈ K , pick λk , fit model using the K − k sample.
3. Plot Loss against λk , pick λ which yields minimum.

▶ Chernozhukov et al. (2018) derive “Oracle” properties for
LASSO, pick λ based on this.

Table: Mean Squared Error, λ = 1

Method Train Train
Least Squares (Univariate) 0.35 0.71
Least Squares (SPF) 0.0 0.68
Least Squares (SPF-Ridge) 0.0003 0.67
Least Squares (SPF-Lasso) 0.59 0.96

Support Vector Machines
▶ While Elastic net, lasso, and ridge were designed around

regularization, other machine learning techniques are designed
to fit more flexible models.

▶ Support Vector Machines are typically used in classification
problems.

▶ Essentially SVM constructs a seperating hyperplane (hello 2nd
basic welfare theorem), to optimally seperate (“classify”)
points.

▶ What’s cool about the support vector machine is that you can
use a kernel trick, so your hyperplanes need not correspond to
lines in euclidean space.

▶ For regression, the hyperplane will be prediction.

Support Vector Machines

▶ Explicit form:

f (x ; θ) =
n∑

i=1

θih(x) + θ0.

▶ ϵ insensitive loss: function does not penalize predictions which
are in an ϵ of the, otherwise the penalized by a factor relatid
to C (comes from dual problem).

▶ Key choice here: the choice of kernel

▶ ϵ, C chosen by (cross) validation.

Estimating Support Vector Machine

from sklearn.svm import SVR
fitted_svm = SVR().fit(Xtrain,ytrain)

Table: Mean Squared Error, Λ = 1

Method Train Train
Least Squares (Univariate) 0.35 0.71
Least Squares (SVM) 0.06 0.73

Other Popular ML Techniques

▶ Forests: partition feature space, fit individual models condition
on subsample.

▶ Obviously, you can partition ad infinitum to obtain perfect
predictions.

▶ Random forest: pick random subspace/set; average over these
random models.

▶ Long literature in econometrics about model averaging Bates
and Granger (1969).

▶ Further refinements: bagging, boosting.

Neural Networks

Let’s construct a hypothesis function using a neural network.

Suppose that we have N features in xt .

(Let x0,t be the intercept.)

Neural Networks are modeled after the way neurons work in a
brain as basical computational units.
▶ Inputs (dendrites) channeled to outputs (axons)
▶ Here the input is xt and the output is f (xt ; θ).
▶ The neuron maps the inputs to outputs using a (nonlinear)

activation function g .
▶ By adding layers of neurons, we can create very (arbitrary)

complex prediction models (all “logical gates”).

Neural Networks, continued

Drop the t subscript. Consider: x0
...
xN

 → [] → f (x ; θ)

aji activation of unit i in layer j .
βj matrix of weights controlling function mapping layer j to layer
j + 1.  x0

...
xN

 →

 a2
0
...
a2
N

 → f (x ; θ)

.

Neural Networks in a figure

Neural Networks Continued

If N = 2 and our neural network has 1 hidden layer.

a2
1 = g(θ1

10x0 + θ1
11x1 + θ1

12x2)

a2
2 = g(θ1

20x0 + θ1
21x1 + θ1

22x2)

f (x ; θ) = g(θ2
10a

2
0 + θ2

11a
2
1 + θ2

12a
2
2 (1)

(2)

(aj0 is always a constant (“bias”) by convention.)

Matrix of coefficients θj sometimes called weights

Depending on g , f is highly nonlinear in x! Good and bad . . .

Which activation function?

name
linear θx
sigmoid 1/(1 + e−θx

tanh tanh(θx)
rectified linear unit max(0, θx)
.

How to pick g . . . ?
▶ Dependent on problem: prediction vs classification.
▶ Think about derivate of cost/loss wrt deep parameters.
▶ Trial and error

How to estimate this model.

Just like any other ML model: minimize the loss!

Gradient descent needs a derivative

back propagation algorithm

Application: Nakamura (2005)

▶ Nakamura (2005) considers (GDP deflator) inflation
forecasting with a neural network.

▶ Model has 1 hidden layer, and uses a hyperbolic tangent
activation function

▶ Can be explicitly written as:

π̂t+h = w2,1 tanh(w
′
1,1xt+b1,1)+w2,2 tanh(w

′
1,2xt+b1,2)+b2,1

▶ xt is a vector of t − 1 variables. For simplicity, I’ll consider
xt−1 = πt−1.

scikit-learn code

from sklearn.neural_network import MLPRegressor

NN = MLPRegressor(hidden_layer_sizes=(2,),
activation=’tanh’,
alpha=1e-6,
max_iter=10000,
solver=’lbfgs’)

fitted_NN = NN.fit(Xtrain,ytrain)

Neural Network vs. AR(1): Predicted Values

What is the “right” method to use

You might have guessed. . .

Wolpert and Macready (1997): A universal learning algorithm
does cannot exist.

Need prior knowledge about problem. . .

This is has been present in econometrics for a very long time. . .

There’s no free lunch!.

References I
Athey, S. (2018): “The Impact of Machine Learning on

Economics,” in The Economics of Artificial Intelligence: An
Agenda, National Bureau of Economic Research, Inc.

Bates, J. M., and C. W. J. Granger. (1969): “The
Combination of Forecasts,” Or, 20, 451.

Chernozhukov, V., W. K. Härdle, C. Huang, and W.
Wang. (2018): “Lasso-Driven Inference in Time and Space,”
Ssrn Electronic Journal, .

Hastie, T., R. Tibshirani, and J. Friedman. (2009): “The
Elements of Statistical Learning,” Springer Series in Statistics, .

Hoerl, A. E., and R. W. Kennard. (2004): “Ridge
Regression,” Encyclopedia of Statistical Sciences, .

Mullainathan, S., and J. Spiess. (2017): “Machine Learning:
An Applied Econometric Approach,” Journal of Economic
Perspectives, 31, 87 106.

Nakamura, E. (2005): “Inflation Forecasting Using a Neural
Network,” Economics Letters, 86, 373 378.

https://EconPapers.repec.org/RePEc:nbr:nberch:14009
https://EconPapers.repec.org/RePEc:nbr:nberch:14009
https://doi.org/10.2307/3008764
https://doi.org/10.2307/3008764
https://doi.org/10.2139/ssrn.3188362
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1002/0471667196.ess2280
https://doi.org/10.1002/0471667196.ess2280
https://doi.org/10.1257/jep.31.2.87
https://doi.org/10.1257/jep.31.2.87
https://doi.org/10.1016/j.econlet.2004.09.003
https://doi.org/10.1016/j.econlet.2004.09.003

References II

Varian, H. R. (2014): “Big Data: New Tricks for Econometrics,”
Journal of Economic Perspectives, 28, 3 28.

Wolpert, D., and W. Macready. (1997): “No Free Lunch
Theorems for Optimization,” Ieee Transactions on Evolutionary
Computation, 1, 67 82.

https://doi.org/10.1257/jep.28.2.3
https://doi.org/10.1109/4235.585893
https://doi.org/10.1109/4235.585893

	Intro + Defintions
	Support Vector Machines
	Other ML Techniques
	Neural Networks
	Bibliography

