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ECON 616: Lecture 9: Factor Models
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Factor Models

▶ We saw in the last lecture that it's import to capture all
of the observables in order to properly estimate some
macroeconometric models.

▶ VARs were a good candidate, but more data => more
parameters

▶ Too much even for Bayesian methods to overcome
(maybe)

One way to summarize a lot of data: factor models.
In this lecture, I'll summarize factor models following Stock
and Watson (2010).
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Introduction

Macro data:

▶ Big N : lots of series, macro, �nancial, sectorial

▶ Small T : max 70 years of postwar data.

▶ When N > T , estimate via conventional methods become
di�cult.

Solution: Use a factor model

▶ Long history in statistics

▶ Dynamic extension: Geweke (1977)

▶ Macro factors: Sargent and Sims (1977)

Consistent �nding: dynamic factors explain a lot of the
variance in many US macro time series [Giannone, Reichlin,
and Sala (2004), Watson (2004)]
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Details

▶ N normalized series with T observations each,
Xt = [x1t , x2t , . . . , xNt ].

▶ q dynamic factors ft
▶ The factor model

ft = Φ(L)ft−1 + et

Xt = Λ(L)ft + ηn

▶ Φ(L) is q × q lag polynomial matrix, Λ(L) is an N × q
lag polynomial, et , ηt iid mean zero.

▶ i th lag polynomial Λi (L) is called the dynamic factor

loading for the ith series, Xit and Λi (L)ft is called the

common component of the ith series.
▶ Assume all the series are stationary
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Consideration
�Suppose one knew ft , and(et , ηt) are Gaussian, then one can
make e�cient forecasts for an individual variable using the
population regression of that variable on the lagged factors
and lags of that variable.�
This means that the forecaster gets the bene�t of using all N
variables through only q factors (a smaller number.)
Optimal one step forecast if et iid:

E [Xit+1|Xt , ft ,Xit−1, ft−1, . . .] = E [Λ(L)ft+1 + et+1|Xt , ft ,Xit−1, ft−1, . . .]

= E [Λ(L)ft+1|ft , ft−1] + E [et+1|Xt , ft ,Xit−1, ft−1, . . .]

= λi (L)Φ(L)ft

Sounds great! How to estimate one of these models?

1. Kalman Filter

2. Cross Sectional Averages (nonparametric)

3. Hybrid Approach
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Kalman Filter
Assume Λ(L) and Φ(L) are 1st order polynomials (only one
lag), without loss of generality.

Xt = Λft + et

ft = Φft−1 + ηt

people sometimes call this the �static form� (somewhat
confusing)

et follows indiviudal AR: di(L)et = ξit , i = 1, . . . ,N ,
ξit ∼ iidN(0, σ2

ξi
)

ηt is id N(0, σ2

ηi
).

This is in state space form!
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We can use the Kalman �lter to estimate this system!
Advantages:

▶ Can handle irregular data (weekly/monthly), by changing
the row of Λ

▶ See: Aruoba, Diebold, and Scotti (2009) for a DFM with
a single factor explaining weekly, monthly, and quartely
variables.

Disadvantages:

▶ Maximizing the likelihood is di�cult � normalization

▶ Computationally intense: need EM algorithm or Kalman
Smoother.

▶ Number of Parameters is proportion to N!
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Second Approach: Cross-Sectional Averaging
Use representation:

Xt = Λft + et

Weighted averages of et will converge to zero by WLLN

This means that only linear combination of factors remain.

Cross Sectional Averaging Estimators

▶ Nonparametric (equation for factors, et don't matter)

▶ ft is treated as a q dimensional factor using N
-dimensional data.

▶ Chamberlain and Rothschild (1983) approximate factor
model conditions:

N−1Λ′Λ → DΛ, with DΛ full rank

maxeig(Σe) ≤ c < ∞ for all N .
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Approximate Factor Model Assumptions
1. Factors are �pervasive� (they a�ect most or all of the

series) and that the factors are heterogenous (so that the
columns of Λ are not too similar.)

2. We also need to limit the in�uence of idiosyncratic
component across series

Intuition: Consider using f̂t to be the weighted average of Xt

using weights W (not random), so that W ′W /N = IN .

if N−1W ′Λ → H as N → ∞ with H full rank, and if the APF
conditions hold:

N−1W ′(Λft + et) = N−1W ′Λft + N−1W ′et → Hft as N → ∞
because N−1W ′Λ → H by assumption and N−1W ′et → 0 by
WLLN.

Since H is full rank, our estimator consistently estimates the
space spanned by factors

Finding H (picking W ) is hard!
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Principal Components Estimation
The principal components estimator is the weighted averaging
estimator (9) with W = Λ̂, where Λ̂ is the matrix of the
eigenvetcors of the sample variance matrix Xt

Σ̂x =
1

T

T∑
t=1

XtX
′
t

associated with the q largest eigenvalues.

Can be derived as solution to least squares problem:

min
f1,...,fT

1

NT

T∑
t=1

(Xt − ΛFt)
′(Xt − ΛFt), (1)

subject to the normalization N−1Λ′Λ = Iq. Then

f̂t = N−1Λ̂′Xt
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Some Details

Theory

▶ Consistency: Connor and Korajczyk (1986), Stock and
Watson (2002)

▶ Asymptotic Distributions: Bai (2003), Bai \ Ng (2006)

Important Extension: Generalized Principal Components
Estimation

▶ Analogue of Generalized Least Squares to Least Squares

▶ Idea: Σe is not proportional to identity matrix, then can
do better by account for these correlations.

▶ Use Σ−1

e as weighting matrix in Equation 1

▶ Solution: use scaled Eigenvectors of Σ
−1/2
e Σ̂xΣ

−1/2
e .

▶ In practice, many procedures for this: Forni et al. (2005),
Stock and Watson (2005)
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Hybrid Approach
Newest variants of esimates merge approaches:

▶ Statitistical E�ciency of State Space (+ missing data!)

▶ Robustness and Convienence of PCA

This is particulary helpful with noisy idiosyncratic disturbances
.

General Approach

1. estimate factors by PCA (or generalized PCA)

2. use estimated factors to estimate the unknown
parameters of state space model.

This is particularly helpful if lags of the factors explain Xt ,
since we can achieve dimensionality reduction using the KF.

Kalman smoother: can delive time-series averaging =>
improved estimate.
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Comparisons

PC vs GPC

▶ Forni et al. (2005) Monte Carlo study GPC works better.

▶ Boving and Ng (2005) di�erent MC study: GPC is not
much better.

▶ Most people just use PC.

PC vs Hybrid Approach

▶ Doz, Giannone, and Reichlin (2006): N is small,
hybrid/State Space approach is better, but negligible
once N , T reach 50.

▶ Reiss and Watson: even for big N , T , is there is a lot of
idiosyncratic noise, hybrid/State Space approach could
yield improvements.
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Estimating The Number of Factors q

Scree plot: plot of ordered eigenvalues of Σ̂x against the rank
of that eigenvlaues.

They can help assess the marginal contribution of the $i$th
principal component for explaining Xt .

Let's look at some Scree plots.

Can formalize: see Onatski (2009).
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Scree Plot for Y = X A + E

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

X = 100x3 N(0,1),
A = 3× 6,
E = 200x6 N(0, 0.012).
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Scree Plot for 6 Independent (Normal) Series

0 1 2 3 4 5
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Estimation of q based on information criteria

Bai and Ng (2002) developed a family of estimators for q that
are motivated by the information criteria bused on model
seelction:

▶ bene�t of additional factor: �t in sample better

▶ cost of additional factor: higher sampling variability

Minimize a penalty likelihood or log sum of squares, where the
penalty factor incrases linearly in the number of factors
(parameters)

IC (q) = lnVq(Λ̂, f̂ ) + q × g(N ,T )

A good g : g(N ,T ) = N+T
NT

ln(min(N ,T ))
With dynamic factors things are harder.
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Why Estimate a Dynamic Factor Model?

▶ Forecasting (basically all of the paper cited here)

▶ Data Reduction � Combine an estimated factor model
with

▶ VAR Bernanke Kuttner
▶ Boivin and Giannonne
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Some Data

Let's look at the yield curve:

▶ Fed Funds Rate

▶ 3 month TB,

▶ 1, 2, 3, 5, 10 TB Treasuries

▶ Sample period: 1980 - 2014
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Yields

1984 1989 1994 1999 2004 2009 2014

DATE

0

5

10

15

20

fed funds

3 mo TB

1 yr TB

2 yr TB

3 yr TB

5 yr TB

10 yr TB



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1984 1989 1994 1999 2004 2009 2014

DATE
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Scree Plot for Bond Yields
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The Factors

1984 1989 1994 1999 2004 2009 2014

DATE
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first factor

second factor

third factor
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Predicting the 3 Month TB, Using 1 Factor

1984 1989 1994 1999 2004 2009 2014

DATE

2
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Predicting the 3 Month TB, Using 2 Factors

1984 1989 1994 1999 2004 2009 2014

DATE

2
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Predicting the 3 Month TB, Using 3 Factors

1984 1989 1994 1999 2004 2009 2014

DATE

2
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The Loadings

fed funds 3 mo TB 1 yr TB 2 yr TB 3 yr TB 5 yr TB 10 yr TB
0.6

0.4

0.2

0.0

0.2

0.4

0.6

first factor

second factor

third factor

Level, Slope, Curvature?
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Forecasting With Factor Models

2010 2011 2012 2013 2014 2015

DATE
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