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Time Series

A time series is a family of random variables indexed by time
{Yt , t ∈ T} defined on a probability space (Ω,F ,P).

(Everybody uses “time series” to mean both the random variables
and their realizations)

For this class, T = {0,±1,±2, . . .}.

Some examples:
1. yt = β0 + β1t + ϵt , ϵt ∼ iidN(0, σ2).
2. yt = ρyt−1 + ϵt , ϵt ∼ iidN(0, σ2).
3. yt = ϵ1 cos(ωt) + ϵ2 sin(ωt), ω ∈ [0, 2π).



Time Series – Examples



Why time series analysis?

Seems like any area of econometrics, but:
1. We (often) only have one realization for a given time series

probability model (and it’s short)!
(A single path of 282 quarterly observations for real GDP since
1948. . . )

2. Focus (mostly) on parametric models to describe time series.
(A long time ago, economists noticed that time series
statistical models could mimic the properties of economic
data.)

3. More emphasis on prediction than some subfields.



(Eugen Slutzky, 1937)



Definitions

The autocovariance function of a time series is the set of functions
{γt(τ), t ∈ T}

γt(τ) = E
[
(Yt − EYt)(Yt+τ − EYt+τ )

′]
A time series is covariance stationary if
1. E

[
Y 2
t

]
= σ2 <∞ for all t ∈ T .

2. E [Yt ] = µ for all t ∈ T .
3. γt(τ) = γ(τ) for all t, τ ∈ T .

Note that |γ(τ)| ≤ γ(0) and γ(τ) = γ(−τ).



Some Examples

1. yt = βt + ϵt , ϵ ∼ iidN(0, σ2). E[yt ] = βt, depends on time,
not covariance stationary!

2. yt = ϵt + 0.5ϵt−1, ϵ ∼ iidN(0, σ2)
E[yt ] = 0, γ(0) = 1.25σ2, γ(±1) = 0.5σ2, γ(τ) = 0
=⇒ covariance stationary.



Building Blocks of Stationary Processes

A stationary process {Zt} is called white noise if it satisfies
1. E [Zt ] = 0.
2. γ(0) = σ2.
3. γ(τ) = 0 for τ ̸= 0.

These processes are kind of boring on their own, but using them we
can construct arbitrary stationary processes!

Special Case: Zt ∼ iidN(0, σ2)



White Noise



Asymptotics for Covariance Stationary MA pr.
Covariance Stationarity isn’t necessary or sufficient to ensure the
convergence of sample averages to population averages.
We’ll talk about a special case now.

Consider the moving average process of order q

yt = ϵt + θ1ϵt−1 + . . .+ θqϵt−q

where ϵt is iid WN(0, σ2).

We’ll show a weak law of large numbers and central limit theorem
applies to this process using the Beveridge-Nelson decomposition
following Phillips and Solo (1992).

Using the lag operator LXt = Xt−1 we can write

yt = θ(L)ϵt , θ(z) = 1 + θ1z + . . .+ θqz
q.



Deriving Asymptotics
Write θ(·) in Taylor expansion-ish sort of way

θ(L) =

q∑
j=0

θjL
j ,

=

 q∑
j=0

θj −
q∑

j=1

θj

+

 q∑
j=1

θj −
q∑

j=2

θj

 L

+

 q∑
j=2

θj −
q∑

j=3

θj

 L2 + . . .

=

q∑
j=0

θj +

 q∑
j=1

θj

 (L− 1) +

 q∑
j=2

θj

 (L2 − L) + . . .

= θ(1) + θ̂1(L− 1) + θ̂2L(L− 1) + . . .

= θ(1) + θ̂(L)(L− 1)



WLLN / CLT
We can write yt as

yt = θ(1)ϵt + θ̂(L)ϵt−1 − θ̂(L)ϵt

An average of yt cancels most of the second and third term . . .

1
T

T∑
t=1

yt =
1
T
θ(1)

T∑
t=1

ϵt +
1
T

(
θ̂(L)ϵ0 − θ̂(L)ϵT

)
We have

1√
T

(
θ̂(L)ϵ0 − θ̂(L)ϵT

)
→ 0.

Then we can apply a WLLN / CLT for iid sequences with Slutzky’s
Theorem to deduce that

1
T

T∑
t=1

yt → 0 and
1√
T

T∑
t=1

yt → N(0, σ2θ(1)2)



ARMA Processes
The processes {Yt} is said to be an ARMA(p, q) process if {Yt} is
stationary and if it can be represented by the linear difference
equation:

Yt = ϕ1Yt−1 + . . . ϕpYt−p + Zt + θ1Zt−1 + . . .+ θqZt−q

with {Zt} ∼ WN(0, σ2). Using the lag operator LXt = Xt−1 we
can write:

ϕ(L)Yt = θ(L)Zt

where

ϕ(z) = 1 − ϕ1z − . . . ϕpz
p and θ(z) = 1 + θ1z + . . .+ θqz

q.

Special cases:
1. AR(1) : Yt = ϕ1Yt−1 + Zt .
2. MA(1) : Yt = Zt + θ1Zt−1.
3. AR(p), MA(q), . . .



Why are ARMA processes important?

1. Defined in terms of linear difference equations (something we
know a lot about!)

2. Parametric family =⇒ some hope for estimating these things

3. It turns out that for any stationary process with
autocovariance function γY (·) with limτ→∞ γ(τ) = 0, we can,
for any integer k > 0, find an ARMA process with
γ(τ) = γY (τ) for τ = 0, 1, . . . , k .

They are pretty flexible!



MA(q) Process Revisited

Yt = Zt + θ1Zt−1 + . . .+ θqZt−q

Is it covariance stationary? Well,

E[Yt ] = E[Zt ] + θ1E[Zt−1] + . . .+ θqE[Zt−q] = 0

and E[YtYt−h] =

E[(Zt +θ1Zt−1+ . . .+θqZt−q)(Zt−h+θ1Zt−h−1+ . . .+θqZt−h−q)]

If q ≤ h, this equals σ2(θhθ0 + . . .+ θqθq−h) and 0 otherwise.

This doesn’t depend on t, so this process is covariance stationary
regardless of values of θ.



Autocorrelation Function



AR(1) Model

Yt = ϕ1Yt−1 + Zt

From the perspective of a linear difference equation, Yt can be
solved for as a function {Zt} via backwards subsitution:

Yt = ϕ1(ϕ1Yt−2 + Zt−1) + Zt (1)
= Zt + ϕ1Zt−1 + ϕ2

1Zt−2 + . . . (2)

=
∞∑
j=0

ϕj1Zt−j (3)

How do we know whether this is covariance stationary?



Analysis of AR(1), continued

We want to know if Yt converges to some random variable as we
consider the infinite past of innovations.

The relevant concept (assuming that E [Y 2
t ] <∞) is

mean square convergence. We say that Yt converges in mean
square to a random variable Y if

E
[
(Yt − Y )2

]
−→ 0 as t −→ ∞.

It turns out that there is a connection to deterministic sums∑∞
j=0 aj .

We can prove mean square convergence by showing that the
sequence generated by partial summations satisfies a Cauchy
criteria, very similar to the way you would for a deterministic
sequence.



Analysis of AR(1), continued

What this boils down to: We need square summability:∑∞
j=0(ϕ

j
1)

2 <∞.

We’ll often work with the stronger condition absolute summability
:
∑∞

j=0 |ϕ
j
1| <∞.

For the AR(1) model, this means we need |ϕ1| < 1, for covariance
stationarity.



Relationship Between AR and MA Processes

You may have noticed that we worked with the
infinite moving average representation of the AR(1) model to show
convergence. We got there by doing some lag operator arithmetic:

(1 − ϕ1L)Yt = Zt

We inverted the polynomial ϕ(z) = (1 − ϕ1z) by

(1 − ϕ1z)
−1 = 1 + ϕ1z + ϕ2

1z
2 + . . .

Note that this is only valid when |ϕ1z | < 1 =⇒ we can’t always
perform inversion!

To think about covariance stationarity in the context of ARMA
processes, we always try to use the MA(∞) representation of a
given series.



A General Theorem

If {Xt} is a covariance stationary process with autocovariance
function γX (·) and if

∑∞
j=0 |θj | <∞, than the infinite sum

Yt = θ(L)Xt =
∞∑
j=0

θjXt−j

converges in mean square. The process {Yt} is covariance
stationary with autocovariance function

γ(h) =
∞∑
j=0

∞∑
k=0

θjθkγx(h − j + k)

If the autocovariances of {Xt} are absolutely summable, then so are
the autocovrainces of {Yt}.



Back to AR(1)

Yt = ϕ1Yt−1 + Zt , Zt ∼ WN(0, σ2), |ϕ1| < 1

The variance can be found using the MA(∞) representation

Yt =
∞∑
j=0

ϕj1Zt−j =⇒

E[Y 2
t ] = E

 ∞∑
j=0

ϕj1Zt−j

 ∞∑
j=0

ϕj1Zt−j


=

∞∑
j=0

E
[
ϕ2j

1 Z 2
t−j

]
=

∞∑
j=0

ϕ2j
1 σ

2 (4)

This means that

γ(0) = V[Yt ] =
σ2

1 − ϕ2
1



Autocovariance of AR(1)

To find the autocovariance:

YtYt−1 = ϕ1Y
2
t−1 + ZtYt−1 =⇒ γ(1) = ϕ1γ(0)

YtYt−2 = ϕ1Yt−1Yt−2 + ZtYt−2 =⇒ γ(2) = ϕ1γ(1)

YtYt−3 = ϕ1Yt−1Yt−3 + ZtYt−3 =⇒ γ(3) = ϕ1γ(2)

Let’s look at autocorrelation

ρ(τ) =
γ(τ)

γ(0)



Autocorrelation for AR(1)



Simulated Paths



Analysis of AR(2) Model

Yt = ϕ1Yt−1 + ϕ2Yt−2 + ϵt

Which means

ϕ(L)Yt = ϵt , ϕ(z) = 1 − ϕ1z − ϕ2z
2

Under what conditions can we invert ϕ(·)? Factoring the polynomial

1 − ϕ1z − ϕ2z
2 = (1 − λ1z)(1 − λ2z)

Using the above theorem, if both |λ1| and |λ2| are less than one in
length (they can be complex!) we can apply the earlier logic
succesively to obtain conditions for covariance stationarity.
Note: λ1λ2 = −ϕ2 and λ1 + λ2 = ϕ1



Companion Form

[
Yt

Yt−1

]
=

[
ϕ1 ϕ2
1 0

] [
Yt−1
Yt−2

]
+

[
ϵt
0

]
(5)

Yt = FYt−1 + ϵt

F has eigenvalues λ which solve λ2 − ϕ1λ− ϕ2 = 0



Finding the Autocovariance Function
Multiplying and using the symmetry of the autocovariance function:

Yt : γ(0) = ϕ1γ(1) + ϕ2γ(2) + σ2 (6)
Yt−1 : γ(1) = ϕ1γ(0) + ϕ2γ(1) (7)
Yt−2 : γ(2) = ϕ1γ(1) + ϕ2γ(0) (8)

... (9)
Yt−h : γ(h) = ϕ1γ(h − 1) + ϕ2γ(h − 2) (10)

We can solve for γ(0), γ(1), γ(2) using the first three equations:

γ(0) =
(1 − ϕ2)σ

2

(1 + ϕ2)[(1 − ϕ2)2 − ϕ2
1]

We can solve for the rest using the recursions.
Note pth order AR(1) have autocovariances / autocorrelations that
follow the same pth order difference equations.
Autocorrelations: call these Yule-Walker equations.



Why are we so obsessed with autocovariance/correlation
functions?

▶ For covariance stationary processes, we are really only
concerned with the first two moments.

▶ If, in addition, the white noise is actually IID normal, those
two moments characterize everything!

▶ So if two processes have the same autocovariance (and
mean. . . ), they’re the same.

▶ We saw that with the AR(1) and MA(∞) example.

▶ How do we distinguish between the different processes yielding
an identical series?



Invertibility

Recall
ϕ(L)Yt = θ(L)ϵt

We already discussed conditions under which we can invert ϕ(L) for
the AR(1) model to represent Yt as an MA(∞).

What about other direction? An MA process is invertible if
θ(L)−1 exists.

so MA(1) : |θ1| < 1, MA(q) : . . .



MA(1) with |θ1| > 1

Consider
Yt = ϵt + 0.5ϵt−1, ϵt ∼ WN(0, σ2)

γ(0) = 1.25σ2, γ(1) = 0.5σ2. vs.

Yt = ϵ̃t + 2ϵ̃t−1, ϵt ∼ WN(0, σ̃2)

γ(0) = 5σ̃2, γ(1) = 2σ̃2 For σ = 2σ̃, these are the same!

Prefer invertible process:
1. Mimics AR case.
2. Intuitive to think of errors as decaying.
3. Noninvertibility pops up in macro: news shocks!



Why ARMA, again?

ARMA models seem cool, but they are inherently linear

Many important phenomenom are nonlinear (hello great
recession!)

It turns out that any covariance stationary process has a linear
ARMA representation!

This is called the Wold Theorem; it’s a big deal.



Wold Decomposition

Theorem Any zero mean covariance stationary process {Yt} can be
represented as

Yt =
∞∑
j=0

ψjϵt−j + κt

where ψ0 = 1 and
∑∞

j=0 ψ
2
j <∞. The term ϵt is white noise are

represents the error made in forecasting Yt on the basis of a linear
function of lagged Y (denoted by Ê[·|·]):

ϵt = yt − Ê[Yt |yt−1, yt−2, ·]

The value of κt is uncorrelated with ϵt−j for any value of j , and can
be predicted arbitrary well from a linear function of past values of
Y :

κt = Ê[κt |yt−1, yt−2, ·]



Strict Stationarity

A time series is strictly stationary if for all t1, . . . , tk , k, h ∈ T if
Yt1 , . . . ,Ytk ∼ Yt1+h, . . . ,Ytk+h

What is the relationship between strict and covariance
stationarity?

{Yt} strictly stationary (with finite second moment) =⇒
covariance stationarity.

The corollary need not be true!

Important Exception if {Yt} is gaussian series covariance
stationarity =⇒ strict stationarity.



Ergodicity

In earlier econometrics classes, you (might have) examined large
sample properties of estimators using LLN and CLT for sums of
independent RVs.
Times series are obviously not independent, so we need some other
tools. Under what conditions do time averages converge to
population averages. One helpful concept:
A stationary process is said to be ergodic if, for any two bounded
and measurable functions f : Rk −→ R and g : Rl −→ R,

lim
n→∞

|E [f (yt , . . . , yt+k)g(yt+n, . . . , gt+n+l ]|

− |E [f (yt , . . . , yt+k)]| |E [g(yt+n, . . . , yt+n+l ]| = 0

Ergodicity is a tedious concept. At an intuitive level, a process if
ergodic if the dependence between an event today and event at
some horizon in the future vanishes as the horizon increases.



The Ergodic Theorem

If {yt} is strictly stationary and ergodic with E[y1] <∞, then

1
T

T∑
t=1

yt −→ E [y1]

CLT for strictly stationary and ergodic processes_
If {yt} is strictly stationary and ergodic with E[y1] <∞,
E [y2

1 ] <∞, and σ̄2 = var(T−1/2 ∑ yt) → σ̄2 <∞, then

1√
T σ̄T

T∑
t=1

yt → N(0, 1)



Facts About Ergodic Theorem

1. iid sequences are stationary and ergodic
2. If {Yt} is strictly stationary and ergodic, and f : R∞ → R is a

measurable function:
Zt = f ({Yt})

Then Zt is strictly stationary and ergodic.
(Note this is for strictly stationary processes!)



Example

Example: an MA(∞) with iid Gaussian white noise.

Yt =
∞∑
j=0

θjϵt−j ,

∞∑
j=0

|θj | <∞.

This means that {Yt}, {Y 2
t }, and {YtYt−h} are ergodic!

1
T

∞∑
t=0

Yt → E[Y0],
1
T

∞∑
t=0

Y 2
t → E[Y 2

0 ],

1
T

∞∑
t=0

YtYt−h → E[Y0Y−h],



Martingale Difference Sequences

{Zt} is a Martingale Difference Sequence (with respect to the
information sets {Ft}) if

E [Zt |Ft−1] = 0 for all t

LLN and CLT for MDS Let {Yt ,Ft} be a martingale difference
sequence such that E [|Yt |2r ] < ∆ <∞ for some r > 1, and all t.

▶ Then ȲT = T−1 ∑T
t=1 Yt

p−→ 0.
▶ Moreover, if var(

√
TȲT ) = σ̄2

T → σ2 > 0, then√
TȲT/σ̄T =⇒ N (0, 1). □



An Example of an MDS
An investor faces a choice between a stock which generates real
return rt , and a nominal bond with guaranteed return, Rt−1 which
is subject to inflation risk, πt .

The investor is risk neutral; no arbitrage implies that:

Et−1[rt ] = Et−1[Rt−1 − πt ].

We can rewrite this as:

0 = rt + πt − Rt−1 − ((rt − Et−1[rt ]) + (πt − Et−1[πt ]))︸ ︷︷ ︸
ηt

.

ηt is an expectation error. In rational expectations models,
Et−1[ηt ] = 0.

Thus ηt is an MDS! Will use this in GMM estimation later in the
course.



The Most Iconic Trio in Macroeconomics



Autocorrelation
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