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Background

▶ Textbook treatments: Woodford (2003), Galí (2008)

▶ Key empirical papers: Ireland (2004), Christiano, Eichenbaum,
and Evans (2005), Smets and Wouters (2007), An and
Schorfheide (2007),

▶ Frequentist estimation: Harvey (1991), Hamilton (1994),

▶ Bayesian estimation: Herbst and Schorfheide (2015)



Small-Scale DSGE Model

▶ Intermediate and final goods producers

▶ Households

▶ Monetary and fiscal policy

▶ Exogenous processes

▶ Equilibrium Relationships



Final Goods Producers
▶ Perfectly competitive firms combine a continuum of

intermediate goods:

Yt =

(∫ 1

0
Yt(j)

1−νdj

) 1
1−ν

.

▶ Firms take input prices Pt(j) and output prices Pt as given;
maximize profits

Πt = Pt

(∫ 1

0
Yt(j)

1−νdj

) 1
1−ν

−
∫ 1

0
Pt(j)Yt(j)dj .

▶ Demand for intermediate good j :

Yt(j) =

(
Pt(j)

Pt

)−1/ν

Yt .

▶ Zero-profit condition implies

Pt =

(∫ 1

0
Pt(j)

ν−1
ν dj

) ν
ν−1

.



Intermediate Goods Producers

▶ Intermediate good j is produced by a monopolist according to:

Yt(j) = AtNt(j).

▶ Nominal price stickiness via quadratic price adjustment costs

ACt(j) =
ϕ

2

(
Pt(j)

Pt−1(j)
− π

)2

Yt(j).

▶ Firm j chooses its labor input Nt(j) and the price Pt(j) to
maximize the present value of future profits:

Et

[ ∞∑
s=0

βsQt+s|t

(
Pt+s(j)

Pt+s
Yt+s(j)−Wt+sNt+s(j)−ACt+s(j)

)]
.



Households

▶ Household derives disutility from hours worked Ht and
maximizes

Et

[ ∞∑
s=0

βs
(
(Ct+s/At+s)

1−τ − 1
1 − τ

+χM ln

(
Mt+s

Pt+s

)
− χHHt+s

)]
.

▶ Budget constraint:

PtCt + Bt +Mt + Tt

= PtWtHt + Rt−1Bt−1 +Mt−1 + PtDt + PtSCt .



Monetary and Fiscal Policy

▶ Central bank adjusts money supply to attain desired interest
rate.

▶ Monetary policy rule:

Rt = R∗,1−ρR
t RρRt−1e

ϵR,t

R∗
t = rπ∗

(πt
π∗

)ψ1
(
Yt

Y ∗
t

)ψ2

▶ Fiscal authority consumes fraction of aggregate output:
Gt = ζtYt .

▶ Government budget constraint:

PtGt + Rt−1Bt−1 +Mt−1 = Tt + Bt +Mt .



Exogenous Processes

▶ Technology:

lnAt = ln γ + lnAt−1 + ln zt , ln zt = ρz ln zt−1 + ϵz,t .

▶ Government spending / aggregate demand: define
gt = 1/(1 − ζt); assume

ln gt = (1 − ρg ) ln g + ρg ln gt−1 + ϵg ,t .

▶ Monetary policy shock ϵR,t is assumed to be serially
uncorrelated.



Equilibrium Conditions
▶ Consider the symmetric equilibrium in which all intermediate

goods producing firms make identical choices; omit j subscript.
▶ Market clearing:

Yt = Ct + Gt + ACt and Ht = Nt .

▶ Complete markets:

Qt+s|t = (Ct+s/Ct)
−τ (At/At+s)

1−τ .

▶ Consumption Euler equation and New Keynesian Phillips curve:

1 = βEt

[(
Ct+1/At+1

Ct/At

)−τ At

At+1

Rt

πt+1

]

1 = ϕ(πt − π)

[(
1 − 1

2ν

)
πt +

π

2ν

]
−ϕβEt

[(
Ct+1/At+1

Ct/At

)−τ Yt+1/At+1

Yt/At
(πt+1 − π)πt+1

]

+
1
ν

[
1 −

(
Ct

At

)τ]
.



Equilibrium Conditions – Continued

▶ In the absence of nominal rigidities (ϕ = 0) aggregate output
is given by

Y ∗
t = (1 − ν)1/τAtgt ,

which is the target level of output that appears in the
monetary policy rule.



Steady State

▶ Set ϵR,t , ϵg ,t , and ϵz,t to zero at all times.
▶ Because technology lnAt evolves according to a random walk

with drift ln γ, consumption and output need to be detrended
for a steady state to exist.

▶ Let
ct = Ct/At , yt = Yt/At , y∗t = Y ∗

t /At .

▶ Steady state is given by:

π = π∗, r =
γ

β
, R = rπ∗,

c = (1 − ν)1/τ , y = gc = y∗.



Solving DSGE Models

▶ Derive nonlinear equilibrium conditions:
▶ System of nonlinear expectational difference equations;
▶ transversality conditions.

▶ Find solution(s) of system of expectational difference methods:

▶ Global (nonlinear) approximation
▶ Local approximation near steady state

▶ We will focus on log-linear approximations around the steady
state.

▶ More detail in: Fernandez-Villaverde, Rubio-Ramirez, and
Schorfheide (2016): “Solution and Estimation Methods for
DSGE Models.”



What is a Local Approximation?
▶ In a nutshell. . . consider the backward-looking model

yt = f (yt−1, σϵt).

▶ Guess that the solution is of the form

yt = y
(0)
t + σy

(1)
t + o(σ).

▶ Steady state:
y
(0)
t = y (0) = f (y (0), 0)

▶ Suppose y (0) = 0. Expand f (·) around σ = 0:

f (yt−1, σϵt) = fyyt−1 + fϵσϵt + o(|yt−1|) + o(σ)

▶ Now plug-in conjectured solution:

σy
(1)
t = fyσy

(1)
t−1 + fϵσϵt + o(σ)

▶ Deduce that y (1)t = fyy
(1)
t−1 + fϵϵt



What is a Log-Linear Approximation?
▶ Consider a Cobb-Douglas production function:

Yt = AtK
α
t N

1−α
t .

▶ Linearization around Y∗, A∗, K∗, N∗:

Yt − Y∗ ≈ Kα
∗ N

1−α
∗ (At − A∗) + αA∗K

α−1
∗ N1−α

∗ (Kt − K∗)

+(1 − α)A∗K
α
∗ N

−α
∗ (Nt − N∗)

▶ Log-linearization: Let f (x) = f (ev ) and linearize with respect
to v :

f (ev ) ≈ f (ev∗) + ev∗f ′(ev∗)(v − v∗).

Thus:

f (x) ≈ f (x∗) + x∗f
′(x∗)(ln x/x∗) = f (x∗) + f ′(x∗)x̃

▶ Cobb-Douglas production function (here relationship is exact):

Ỹt = Ãt + αK̃t + (1 − α)Ñt



Loglinearization of New Keynesian Model

▶ Consumption Euler equation:

ŷt = Et [ŷt+1]−
1
τ

(
R̂t −Et [π̂t+1]−Et [ẑt+1]

)
+ ĝt −Et [ĝt+1]

▶ New Keynesian Phillips curve:

π̂t = βEt [π̂t+1] + κ(ŷt − ĝt),

where
κ = τ

1 − ν

νπ2ϕ

▶ Monetary policy rule:

R̂t = ρR R̂t−1 + (1 − ρR)ψ1π̂t + (1 − ρR)ψ2 (ŷt − ĝt) + ϵR,t



Canonical Linear Rational Expectations System

▶ Define
xt = [ŷt , π̂t , R̂t , ϵR,t , ĝt , ẑt ]

′.

▶ Augment xt by Et [ŷt+1] and Et [π̂t+1].
▶ Define

st =
[
x ′t ,Et [ŷt+1],Et [π̂t+1]

]′
.

▶ Define rational expectations forecast errors forecast errors for
inflation and output. Let

ηy ,t = yt − Et−1[ŷt ], ηπ,t = πt − Et−1[π̂t ].

▶ Write system in canonical form Sims (2002):

Γ0st = Γ1st−1 +Ψϵt +Πηt .



How Can One Solve Linear Rational Expectations Systems?
A Simple Example

▶ Consider

yt =
1
θ t
[yt+1] + ϵt , (1)

where ϵt ∼ iid(0, 1) and θ ∈ Θ = [0, 2].

▶ Introduce conditional expectation ξt = Et [yt+1] and forecast
error ηt = yt − ξt−1.

▶ Thus,

ξt = θξt−1 − θϵt + θηt . (2)



A Simple Example

▶ Determinacy: θ > 1. Then only stable solution:

ξt = 0, ηt = ϵt , yt = ϵt (3)

▶ Indeterminacy: θ ≤ 1 the stability requirement imposes no
restrictions on forecast error:

ηt = M̃ϵt + ζt . (4)

▶ For simplicity assume now ζt = 0. Then

yt − θyt−1 = M̃ϵt − θϵt−1. (5)

▶ General solution methods for LREs: Blanchard and Kahn
(1980), King and Watson (1998), Uhlig (1999), Anderson
(2000), Klein (2000), Christiano (2002), Sims (2002).



Solving a More General System

▶ Canonical form:

Γ0(θ)st = Γ1(θ)st−1 +Ψ(θ)ϵt +Π(θ)ηt , (6)

▶ The system can be rewritten as

st = Γ∗1(θ)st−1 +Ψ∗(θ)ϵt +Π∗(θ)ηt . (7)

▶ Replace Γ∗1 by JΛJ−1 and define wt = J−1st .
▶ To deal with repeated eigenvalues and non-singular Γ0 we use

Generalized Complex Schur Decomposition (QZ) in practice.
▶ Let the i ’th element of wt be wi ,t and denote the i ’th row of

J−1Π∗ and J−1Ψ∗ by [J−1Π∗]i . and [J−1Ψ∗]i ., respectively.



Solving a More General System

▶ Rewrite model:

wi ,t = λiwi ,t−1 + [J−1Ψ∗]i .ϵt + [J−1Π∗]i .ηt . (8)

▶ Define the set of stable AR(1) processes as

Is(θ) =

{
i ∈ {1, . . . n}

∣∣∣∣ |λi (θ)| ≤ 1
}

(9)

▶ Let Ix(θ) be its complement. Let ΨJ
x and ΠJ

x be the matrices
composed of the row vectors [J−1Ψ∗]i . and [J−1Π∗]i . that
correspond to unstable eigenvalues, i.e., i ∈ Ix(θ).

▶ Stability condition:

ΨJ
xϵt +ΠJ

xηt = 0 (10)

for all t.



Solving a More General System
▶ Solving for ηt . Define

ΠJ
x =

[
U.1 U.2

] [ D11 0
0 0

] [
V ′
.1

V ′
.2

]
(11)

= U︸︷︷︸
m×m

D︸︷︷︸
m×k

V ′︸︷︷︸
k×k

= U.1︸︷︷︸
m×r

D11︸︷︷︸
r×r

V ′
.1︸︷︷︸

r×k

.

▶ If there exists a solution to Eq.~(10) that expresses the
forecast errors as function of the fundamental shocks ϵt and
sunspot shocks ζt , it is of the form

ηt = η1ϵt + η2ζt (12)
= (−V.1D

−1
11 U ′

.1Ψ
J
x + V.2M̃)ϵt + V.2Mζζt ,

where M̃ is an (k − r)× l matrix, Mζ is a (k − r)× p matrix,
and the dimension of V.2 is k × (k − r). The solution is unique
if k = r and V.2 is zero.



Proposition

If there exists a solution to Eq. (10) that expresses the forecast
errors as function of the fundamental shocks ϵt and sunspot shocks
ζt , it is of the form

ηt = η1ϵt + η2ζt (13)
= (−V.1D

−1
11 U ′

.1Ψ
J
x + V.2M̃)ϵt + V.2Mζζt ,

where M̃ is an (k − r)× l matrix, Mζ is a (k − r)× p matrix, and
the dimension of V.2 is k × (k − r). The solution is unique if k = r
and V.2 is zero.



At the End of the Day. . .

▶ We obtain a transition equation for the vector st :

st = T (θ)st−1 + R(θ)ϵt .

▶ The coefficient matrices T (θ) and R(θ) are functions of the
parameters of the DSGE model.



Measurement Equation
▶ Relate model variables st to observables yt .
▶ In NK model:

YGRt = γ(Q) + 100(ŷt − ŷt−1 + ẑt)

INFLt = π(A) + 400π̂t
INTt = π(A) + r (A) + 4γ(Q) + 400R̂t .

where

γ = 1 +
γ(Q)

100
, β =

1
1 + r (A)/400

, π = 1 +
π(A)

400
.

▶ More generically:

yt = D(θ) + Z (θ)st +ut︸︷︷︸
optional

.

The state and measurement equations define a State Space
Model.



State Space Models

▶ State space models form a very general class of models that
encompass many of the specifications that we encountered
earlier.

▶ ARMA models and linearized DSGE models can be written in
state space form.

A state space model consists of
▶ a measurement equation that relates an unobservable state

vector st to the observables yt ,
▶ a transition equation that describes the evolution of the state

vector st .



Measurement Equation

The measurement equation is of the form

yt = Zt|t−1st + dt|t−1 + ut , t = 1, . . . ,T (14)

where yt is a n × 1 vector of observables, st is a m × 1 vector of
state variables, Zt|t−1 is an n ×m vector, dt|t−1 is a n × 1 vector,
and ut are innovations (or often “measurement errors”) with mean
zero and Et−1[utu

′
t ] = Ht|t−1.

▶ The matrices Zt|t−1, dt|t−1, and Ht|t−1 are in many
applications constant.

▶ However, it is sufficient that they are predetermined at t − 1.
They could be functions of yt−1, yt−2, . . ..

▶ To simplify the notation, we will denote them by Zt , dt , and
Ht , respectively.



Transition Equation

The transition equation is of the form

st = Tt|t−1st−1 + ct|t−1 + Rt|t−1ηt (15)

where Rt is m × g , and ηt is a g × 1 vector of innovations with
mean zero and variance Et|t−1[ηtη

′
t ] = Qt|t−1.

▶ The assumption that st evolves according to an VAR(1)
process is not very restrictive, since it could be the companion
form to a higher order VAR process.

▶ It is furthermore assumed that (i) expectation and variance of
the initial state vector are given by [s0] = A0 and var [s0] = P0;

▶ ut and ηt are uncorrelated with each other in all time periods ,
and uncorrelated with the initial state. [not really necessary]



Adding it all up

If the system matrices Zt , dt ,Ht ,Tt , ct ,Rt ,Qt are non-stochastic
and predetermined, then the system is linear and yt can be
expressed as a function of present and past ut ’s and ηt ’s.

1. calculate predictions yt |Y t−1, where Y t−1 = [yt−1, . . . , y1],
2. obtain a likelihood function

p(Y T |{Zt , dt ,Ht ,Tt , ct ,Rt ,Qt})

3. back out a sequence{
p(st |Y t , {Zτ , dτ ,Hτ ,Tτ , cτ ,Rτ ,Qτ})

}
The algorithm is called the Kalman Filter and was originally
adopted from the engineering literature.



A Useful Lemma

Let (x ′, y ′)′ be jointly normal with

µ =

[
µx
µy

]
and Σ =

[
Σxx Σxy

Σyx Σyy

]
Then the pdf (x |y) is multivariate normal with

µx |y = µx +ΣxyΣ
−1
yy (y − µy ) (16)

Σxx |y = Σxx − ΣxyΣ
−1
yy Σyx (17)

□



A Bayesian Interpretation to the Kalman Filter

▶ Although the idea of the algorithm is based on linear
projections, it has a very straightforward Bayesian
interpretation.

▶ We will assume that the conditional distributions of st and yt
given time t − 1 information are Gaussian.

▶ Since the system is linear, all the conditional and marginal
distributions that we calculate when we move from period
t − 1 to period t will also be Gaussian.

▶ Since the state vector st is unobservable, it is natural in
Bayesian framework to regard it as a random vector.

Note: The subsequent analysis is conditional on the system
matrices Zt , dt ,Ht ,Tt , ct ,Rt ,Qt . For notational convenience we
will, however, drop the system matrices from the conditioning set.



The calculations will be based on the following conditional
distribution, represented by densities:

1. Initialization: p(st−1|Y t−1)

2. Forecasting:

p(st |Y t−1) =

∫
p(st |st−1,Y

t−1)p(st−1|Y t−1)dst−1

p(yt |Y t−1) =

∫
p(yt |st ,Y t−1)p(st |Y t−1)dst

3. Updating:

p(st |Y t) =
p(yt |st ,Y t−1)p(st |Yt−1)

p(yt |Y t−1)

▶ The integrals look troublesome.
▶ However, since the state space model is linear, and the

distribution of the innovations ut and ηt are Gaussian =⇒
everything is Gaussian!

▶ Hence, we only have to keep track of conditional means and
variances.



Initialization

▶ In period zero, we will start with a prior distribution for the
initial state s0.

▶ This prior is of the form s0 ∼ N (A0,P0).

▶ If the system matrices imply that the state vector has a
stationary distribution, we could choose A0 and P0 to be the
mean and variance of this stationary distribution.



Forecasting
▶ At (t − 1)+, that is, after observing yt−1, the belief about the

state vector has the form st−1|Y t−1 ∼ (At−1,Pt−1).

▶ Thus, the “posterior” from period t − 1 turns into a prior for
(t − 1)+.

Since st−1 and ηt are independent multivariate normal random
variables, it follows that

st |Y t−1 ∼ N (ŝt|t−1,Pt|t−1) (18)

where

ŝt|t−1 = TtAt−1 + ct

Pt|t−1 = TtPt−1T
′
t + RtQtR

′
t



Forecasting yt

The conditional distribution of yt |st ,Y t−1 is of the form

yt |st ,Y t−1 ∼ N (Ztst + dt ,Ht) (19)

Since st |Y t−1 ∼ N (ŝt|t−1,Pt|t−1), we can deduce that the
marginal distribution of yt conditional on Y t−1 is of the form

yt |Yt−1 ∼ N (ŷt|t−1,Ft|t−1) (20)

where

ŷt|t−1 = Zt ŝt|t−1 + dt

Ft|t−1 = ZtPt|t−1Z
′
t + Ht



Updating
To obtain the posterior distribution of st |yt ,Y t−1 note that

st = ŝt|t−1 + (st − ŝt|t−1) (21)
yt = Zt ŝt|t−1 + dt + Zt(st − ŝt|t−1) + ut (22)

and the joint distribution of st and yt is given by[
st
xt

] ∣∣∣Y t−1 ∼ N
([

ŝt|t−1
ŷt|t−1

]
,

[
Pt|t−1 Pt|t−1Z

′
t

ZtP
′
t|t−1 Ft|t−1

])
(23)

st |yt ,Y t−1 ∼ N (At ,Pt) (24)

where

At = ŝt|t−1 + Pt|t−1Z
′
tF

−1
t|t−1(yt − Zt ŝt|t−1 − dt)

Pt = Pt|t−1 − Pt|t−1Z
′
tF

−1
t|t−1ZtPt|t−1

The conditional mean and variance ŷt|t−1 and Ft|t−1 were given
above. This completes one iteration of the algorithm. The posterior
st |Y t will serve as prior for the next iteration. □



Likelihood Function
We can define the one-step ahead forecast error

νt = yt − ŷt|t−1 = Zt(st − ŝt|t−1) + ut (25)

The likelihood function is given by

p(Y T |parameters) =
T∏
t=1

p(yt |Y t−1, parameters)

= (2π)−nT/2

(
T∏
t=1

|Ft|t−1|
)−1/2

× exp

{
−1

2

T∑
t=1

νtFt|t−1ν
′
t

}
(26)

This representation of the likelihood function is often called
prediction error form, because it is based on the recursive prediction
one-step ahead prediction errors νt . □



Multistep Forecasting
The Kalman Filter can also be used to obtain multi-step ahead
forecasts. For simplicity, suppose that the system matrices are
constant over time. Since

st+h−1|t−1 = T hst−1 +
h−1∑
s=0

T sc +
h−1∑
s=0

T sRηt (27)

it follows that

ŝt+h−1|t−1 = [st+h−1|t−1|Y t−1] = T hAt−1 +
h−1∑
s=0

T sc

Pt+h−1|t−1 = var [st+h−1|t−1|Y t−1] = T hPt−1T
h +

h−1∑
s=0

T sRQR ′T s′

which leads to

yt+h−1|Yt−1 ∼ N (ŷt+h−1|t−1,Ft+h−1|t−1) (28)

where

ŷt+h−1|t−1 = Zŝt+h−1|t−1 + d

Ft+h−1|t−1 = ZPt+h−1|t−1Z
′ + H

The multi-step forecast can be computed recursively, simply by
omitting the updating step in the algorithm described above. □



Example 1: New Keynesian DSGE

▶ We can solve the New Keynesian DSGE model described
earlier.

▶ Obtain state space representation
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Example 2 – ARMA models

Consider the ARMA(1,1) model of the form

yt = ϕyt−1 + ϵt + θϵt−1 ϵt ∼ iidN (0, σ2) (29)

The model can be rewritten in state space form

yt = [1 θ]
[

ϵt
ϵt−1

]
+ ϕyt−1 (30)[

ϵt
ϵt−1

]
=

[
0 0
1 0

] [
ϵt−1
ϵt−2

]
+

[
ηt
0

]
(31)

where ηt ∼ iidN (0, σ2). Thus, the state vector is composed of
αt = [ϵt , ϵt−1]

′ and dt|t−1 = ρyt−1. The Kalman filter can be used
to compute the likelihood function of the ARMA model conditional
on the parameters ϕ, θ, σ2. A numerical optimization routine has to
be used to find the maximum of the likelihood function. □



A Model with Time Varying Coefficients
Consider the following regression model with time varying
coefficients

yt = x ′tβt + ut (32)
βt = Tβt−1 + c + ηt (33)

There are many reasons to believe that macroeconomic
relationships are not stable over time. An entire branch of the
econometrics literature is devoted to tests for structural breaks,
that is, tests for changes in the parameter values. However, to be
able to predict future changes in the parameter values it is
important to model the time variation in the parameters. The state
variable αt corresponds now to the vector of regression parameters
βt . It is often assumed that the regression coefficients follow
univariate random walks of the form

βj ,t = βj ,t−1 + ηj ,t (34)

Hence, the only unknown parameters are var [ut ] and var [ηj ,t ]. The
Kalman filter can provide us with a sequence of estimates for the
time varying coefficients.

{[βt |Y t ,X t ]}Tt=1, {var [βt |Y t ,X t ]}Tt=1

and the likelihood of the data conditional on E[utu′t ], E[ηtη′t ], T
and c . □
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