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Bayesian VARs

Want to do Bayesian estimation of VARs for better model
properties.

Use Minnesota Prior of Doan, Litterman, and Sims (1984) to
shrink prior towards “reasonable” parameter configurations.

First, we need some preliminaries. . .



The Inverse Wishart Distribution
The multivariate version of the inverted Gamma distribution is
called Wishart Distribution. Let W be a n × n positive definite
random matrix. W has the inverted Wishart IW (S, ν)
distribution if its density is of the form

p(W |S, ν) ∝ |S|ν/2|W |−(ν+n+1)/2 exp
{
−1

2
tr [W−1S]

}
(1)

The Wishart distribution arises in the Bayesian analysis of
multivariate regression models. To sample a W from an
inverted Wishart IW (S, ν) distribution, draw n × 1 vectors
Z1, . . . ,Zν from a multivariate normal N (0,S−1) and let

W =

[
ν∑

i=1

ZiZ ′
i

]−1

Note: to generate a draw Z from a multivariate N (µ,Σ),
decompose Σ = CC′, where C is the lower triangular Cholesky
decomposition matrix. Then let Z = µ+ CN (0, I).



Dummy Observation Priors

Suppose we have T ∗ dummy observations (Y ∗,X ∗). The
likelihood function for the dummy observations is of the form

p(Y ∗|Φ,Σu) = (2π)−nT∗/2|Σu|−T∗/2 (2)

exp
{
−1

2
tr [Σ−1

u (Y ∗′Y ∗ − Φ′X ∗′Y ∗ − Y ∗′X ∗Φ+ Φ′X ∗′X ∗Φ)]

}
.

Combining~(2) with the improper prior p(Φ,Σu) ∝ |Σu|−(n+1)/2

yields

p(Φ,Σu|Y ∗) = c−1
∗ |Σu|−

T∗+n+1
2

exp
{
−1

2
tr [Σ−1

u (Y ∗′Y ∗ − Φ′X ∗′Y ∗ − Y ∗′X ∗Φ+ Φ′X ∗′X ∗Φ)]

}
,

which can be interpreted as a prior density for Φ and Σu.



Define

Φ̂∗ = (X ∗′X ∗)−1X ∗′Y ∗

S∗ = (Y ∗ − X ∗Φ̂∗)′(Y ∗ − X ∗Φ̂∗).

It can be verified that the prior p(Φ,Σu|Y ∗) is of the Inverted
Wishart-Normal IW −N form

Σu ∼ IW
(

S∗,T ∗ − k
)

(3)

Φ|Σu ∼ N
(
Φ∗,Σu ⊗ (X ∗′X ∗)−1

)
. (4)

The appropriate normalization constant for the prior density is
given by

c∗ = (2π)
nk
2 |X ∗′X ∗|−

n
2 |S∗|−

T∗−k
2 (5)

2
n(T∗−k)

2 π
n(n−1)

4

n∏
i=1

Γ[(T ∗ − k + 1 − i)/2],

k is the dimension of xt and Γ[·] denotes the gamma function.
Details of this calculation can be found in Zellner (1971).



Minnesota Prior
Here is a brief description of the “Minnesota Prior,” see Doan,
Litterman, and Sims (1984). Consider the following Gaussian
bivariate VAR(2).[

y1,t
y2,t

]
=

[
α1
α2

]
+

[
β11 β12
β21 β22

] [
y1,t−1
y2,t−1

]
+

[
γ11 γ12
γ21 γ22

] [
y1,t−2
y2,t−2

]
+

[
u1,t
u2,t

]
(6)

Define yt = [y1,t , y2,t ]
′, xt = [y ′

t−1, y
′
t−2,1]

′, and ut = [u1,t ,u2,t ]
′

and

Φ =


β11 β21
β12 β22
γ11 γ21
γ12 γ22
α1 α2

 . (7)

The VAR can be rewritten as follows

y ′
t = x ′

tΦ+ u′
t , t = 1, . . . ,T , ut ∼ iidN (0,Σu) (8)

or in matrix form

Y = XΦ+ U. (9)



Preliminaries

Based on a short pre-sample Y0 (typically the observations
used to initialized the lags of the VAR) one calculates:
s = std(Y0) and ȳ = mean(Y0). In addition there are a number
of tuning parameters for the prior

▶ τ is the overall tightness of the prior. Large values imply a
small prior covariance matrix.

▶ d : the variance for the coefficients of lag h is scaled down
by the factor l−2d .

▶ w : determines the weight for the prior on Σu. Suppose that
Zi = N (0, σ2). Then an estimator for σ2 is $2 = 1w

∑w
i=1

Z2
i .$

The larger w , the more informative the estimator, and in
the context of the VAR, the tighter the prior.

▶ λ and µ: additional tuning parameters.



Dummies for β coefficients

Dummies for the β coefficients:[
τs1 0
0 τs2

]
=

[
τs1 0 0 0 0
0 τs2 0 0 0

]
Φ+ u′

The first observation implies, for instance, that

τs1 = τs1β11 + u1 =⇒ β11 = 1 − u1

τs1
=⇒ β11 ∼ N

(
1,

Σu,11

τ2s2
1

)

0 = τs1β21 + u2 =⇒ β21 = − u2

τs1
=⇒ β21 ∼ N

(
0,

Σu,22

τ2s2
1

)



More Dummies
Dummies for the γ coefficients[

0 0
0 0

]
=

[
0 0 τs12d 0 0
0 0 0 τs22d 0

]
Φ+ u′

The prior for the covariance matrix is implemented by[
s1 0
0 s2

]
=

[
0 0 0 0 0
0 0 0 0 0

]
Φ+ u′

Co-persistence prior dummy observations, reflecting the belief
that when data on all y ’s are stable at their initial levels, thy will
tend to persist at that level:[

λȳ1 λȳ2
]
=
[
λȳ1 λȳ2 λȳ1 λȳ2 λ

]
Φ+ u′

Own-persistence prior dummy observations, reflecting the
belief that when yi has been stable at its initial level, it will tend
to persist at that level, regardless of the value of other variables:[

µȳ1 0
0 µȳ2

]
=

[
µȳ1 0 µȳ1 0 0
0 µȳ2 0 µȳ2 0

]
Φ+ u′



Training Sample Priors

In the same way we constructed a prior from dummy
observations, we can also construct a prior from a training
sample. Suppose we split the actual sample Y = [Y−,Y+],
where Y− is interpreted as training sample, then

p(Φ,Σu) = c−1
− |Σu|−

T−+n+1
2{

−1
2

tr [Σ−1
u (Y−′

Y− − Φ′X−′
Y− − Y−′

X−Φ+ Φ′X−′
X−Φ)]

}
,

Of course one can also combine the dummy observations and
training sample to construct a prior distribution.



Posteriors
Notice that

p(Φ,Σu|Y ) ∝ p(Y |Φ,Σu)p(Y ∗|Φ,Σu) (10)

Now define:

Φ̃ = (X ∗′X ∗ + X ′X )−1(X ∗′Y ∗ + X ′Y ) (11)

Σ̃u =
1

T ∗ + T

[
Y ∗′Y ∗ + Y ′Y )

−(X ∗′Y ∗ + X ′Y )′(X ∗′X ∗ + X ′X )−1(X ∗′Y ∗ + X ′Y )

]
.(12)

Since prior and likelihood function are conjugate, it is
straightforward to show, e.g., Zellner (1971), that the posterior
distribution of Φ and Σu is also of the Inverted Wishart –
Normal form:

Σu|Y ∼ IW
(
(T ∗ + T )Σ̃u,T ∗ + T − k

)
(13)

Φ|Σu,Y ∼ N
(
Φ̃,Σu ⊗ (X ∗′X ∗ + X ′X )−1

)
. (14)



Marginal Data Density
Suppose that we are using a prior constructed from a training
sample and dummy observations. Then the marginal data
density is given by

p(Y+|Y−,Y ∗,M0) =

∫
p(Y+,Y−,Y ∗|Φ,Σu)dΦdΣu∫

p(Y−,Y ∗|Φ,Σu)dΦdΣu
(15)

where the integrals in the numerator and denominator are given
by the appropriate modification of c∗ defined above. More
specifically:∫

p(Y |Φ,Σu)dΦdΣu = π− T−k
2 |X ′X |−

n
2 |S|−

T−k
2 π

n(n−1)
4

n∏
i=1

Γ[(T − k + 1 − i)/2],(16)

where

Φ̂ = (X ′X )−1X ′Y
S = (Y − X Φ̂)′(Y − X Φ̂).



An example



Log MDD as function of τ



More on SVARS

▶ we talked generally about the identification problem in
SVARs.

▶ We described how identification amounted to putting
restrictions on the mapping from reduced-form to structural
representation of the VAR.

▶ We introduced some basic identification schemes in a
simple model.

▶ Today I’m going to present an algorithm for estimating
SVARs for general identification schemes.

▶ Then I’m going to talk about attempts to introduce more
data to help solve identification problem.



SVARs, again
A canonical way to write an SVAR(p):

y ′
t A0 = y ′

t−1A1 + . . .+ yt−pA′
p + c + ϵ′t , ϵt(0, I)

= xtA+ + ϵ′t (17)

the reduced-form is

y ′
t = x ′

tΦ+ u′
t , ut ∼ (0,Σ)

(18)

with Σ = (A0A′
0)

−1 and Φ = A+A−1
0 . Recall A0 = Σ−1′

tr Ω where
Ω is an orthogonal matrix.

We’re going to talk about a general algorithm for estimating
SVARs from Arias, Rubio-Ramirez, Waggoner (2016).



Estimating SVARs

We’re going to work like this:

(1) Estimate (Φ,Σ) + (2) Add Assumptions −→ Get (A0,A+).

How to estimate (Φ,Σ)? Let’s Go Bayesian (but you don’t have
too!)

p(Φ,Σ|Y ) ∝ p(Y |Φ,Σ)p(Φ,Σ)

p(Φ,Σ) : Minnesota Prior
p(Y |Φ,Σ) : Normal Likelihood

=⇒ the posterior of Φ,Σ is Normal-Inverse Wishart.

How to get to (2)? Well we need to go back to Ω. . .



A Prior on Ω

Last class we talked about a number of different choices for Ω,
sometimes as a function of the parameters Φ and Σ.

Formalize this as a prior over Ω : p(Ω|Φ,Σ).

Since Ω does not enter the likelihood, this prior doesn’t get
updated by the data:

p(Ω|Y ,Φ,Σ) = p(Ω|Φ,Σ).

Let’s just forget about possible conditioning and focus on p(Ω)
for now.

It’s hard to put a prior on the space of orthogonal matrices.

How about a prior which places equal weight on every
Ω ∈ O(n) = {Ω|ΩΩ′ = In}.



The Haar Measure
Remember our characterization of the 2x2 orthogonal matrix

Ω(φ) =

[
cosφ − sinφ
sinφ cosφ

]
(19)

where φ ∈ (−π, π]

If we put a uniform prior on φ, we obtained a uniform
distribution over Ω.

This is tedious in higher dimensions. Need a more general
concept.

Random matrix theory Haar measure is invariant measure for
(in this case) orthogonal matrices.
The theory is difficult, but the upshot is that we can generate
from a uniform distribution over O(n) by simulating a n × n
matrix of independent normals, and then taking Q from the QR
decomposition of that matrix.



An Example

▶ Yt =
[Industrial Production, GDP Deflator, Federal Funds Rate]

▶ Frequency = monthly
▶ Date = 1994-01:2007-06
▶ Minnesota Prior λ = [0.5,3,1,0.5,0.5,1].

Let’s estimate the VAR (i.e., Φ and Σ.)

Then draw p(Ω) from the uniform distribution (Haar measure)
and look at the response to a monetary policy shock.

Minor detail: we are going to sign-normalize so that because
A0,A+ is only identified up to a sign.



The effect of a monetary policy shock
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The effect of a monetary policy shock

Recall that the Cholesky factorization refers to the dogmatic
prior p(Ω) = I.

What does that look like?
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In terms of the response of the federal funds rate, the cholesky
is on the upper edge of the unidentified model.



Impact Effect of Monetary Policy Shock
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Beware: Even though Ω ∼ Uniform, the IRF need not be.
Nonlinear functions of uniform RV aren’t necessarily uniform
(criticism of SVAR by Baumeister and Hamilton 2016).



A Word on The Cholesky

Why is the response of FFR so extreme for Choleksy
identification?
Recall:

A0 =

a11 a12 a13
0 a22 a23
0 0 a33


and Σ = (A0A′

0)
−1.

This means that Σ1,1 = 1
a2

11
.

All of the forecast error Σ11 for the interest rate needs to be
explained by monetary shock!



Beyond Cholesky and “Uniformity”

▶ By drawing from Φ,Σ|Y and then Ω, we were able to draw
from A0,A+.

▶ Sign restrictions complicate things only some (A0,A+)
draws will be valid.

▶ A simple rejection sampler will accomplish this.

Algorithm 2. Drawing from an SVAR Posterior with Sign
Restrictions

1. Draw (A0,A+) from the unrestricted posterior.
2. Keep the draw if the sign restrictions are satisfied.
3. Return to Step 1 until the required number of draws from

the posterior of structural parameter conditional on the sign
restrictions has been obtained.



A Simple Sign Restricted VAR

Let’s assume now that {After 6 months, inflation must have
fallen.}∑6
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∑6

i=0(Φ
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0 )3 < 0
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Want
zero restrictions? See ARRW.





Romer and Romer (2004)

Romer and Romer, 2004, a New Measure of Monetary Policy
Shocks: Derivation and Implications, American Economic
Review.

Policy instruments move endogenously with changes in
economic conditions

Movements in policy instruments are often responses to
information about future economic developments. New
indicator of monetary policy shocks that avoids these problems.

▶ Series for changes in the ‘intended’ Federal Funds Rate
around FOMC meetings.

▶ Control for Federal Reserve Greenbook forecasts



Let’s Construct ϵMP,t

∆ffm = α+ βffbm +
2∑

i=−1

γiGBmi + ϵMP,t

∆ffm is change in the intended funds rate around FOMC
meeting m.

ffbm is the level of the intended funds rate changes associated
with meeting m.

GMmi is the Greenbook forecast of output, inflation, and
unemployment for quarter i .

ϵMP,t is our monetary policy shock.



The Shocks

1993 1995 1997 1999 2001 2003 2005 2007

DATES

0.6

0.4

0.2

0.0

0.2

0.4

0.6
Romer and Romer Shocks



If You Have the Shocks, do you even need a VAR?

Romer and Romer run a univariate regression:

∆yt = a0 +
36∑

j=1

cjeMP
t−j +

24∑
j=1

bj∆t−j + ....

This means that the IRF = {0, c1, c1 + (c2 + b1c1), . . .}.

Romer and Romer use a sample that starts in teh 1970s and
goes until 1996.



Effect of Monetary Policy on Ouptut



More Data, Part 2

▶ high-frequency event study methodology developed in
Kuttner (2001)

▶ fed funds future – contracts that trade on price of federal
funds rate average over a given month.

▶ shock calculate the change in (appropriately scaled)
current-month federal funds rate futures around a tight
window surrounding the release of FOMC statements.

▶ Use an extremely tight window (30 minutes) to calculate
this shock.
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Proxy SVAR (Mertens and Ravn, 2014 AER)
Given two ways of constructing the monetary policy shock
yielded two different results, let’s an alternative scheme. Call
our external measure mt .

u1,t = ηu,t + S1ε1,t

u2,t = ξu1,t + S2ε2,t

▶ Estimate ξ by instrumenting u1,t with mt .
▶ Compute ε̃2,t = u2,t − ξu1,t .
▶ Estimate η by instrumenting u2,t with ε̃2,t .
▶ Compute impact matrix:

C =

[
(I − ηξ)−1 η(I − ξη)−1

ξ(I − ηξ)−1 (I − ξη)−1

] [
S1 0
0 S2

]
▶ Impose restrictions on S1 and S2 to identify shocks within

blocks.



Another Interpretation: Bayesian Proxy SVAR

▶ Assume mt is a noisy measure of the structural shock of
interest:

mt = βe1,t + σννt , νt ∼ N (0,1) and νt ⊥ et .

▶ Assumptions on proxy mt :
1. E [mte1,t ] = β
2. $E[mte/1, t’] = 0.$

▶ Joint likelihood:

p(Y1:T ,M1:T |Φ,Σ,Ω, β, σν) =
p(Y1:T |Φ,Σ)︸ ︷︷ ︸

OLD

× p(M1:T |Y1:T ,Φ,Σ,Ω, β, σν)︸ ︷︷ ︸
NEW



Ã0 =

[
A0 −β

σA·1,0
O1×n

1
σ

]
, and Ã+ =

[
A+ −β

σA·1,+
O1×n 0

]
.

(20)
Now A·1,0 is identified!

▶ Caldara-Herbst use this to estimate the effects of MP
shock with particular attention to labor market.

▶ Let’s look at a simple example first.
▶ Data = [R, Credit Spreads]
▶ Measure of credit spreads comes form Excess Bond

Premia [Gilchrist and Zakrasjek (2011)]
▶ Remember :

Ω(φ) =

[
cosφ − sinφ
sinφ cosφ

]
(21)

where φ ∈ (−π, π].
▶ Compare Prior and Posterior for φ



Identification in Proxy SVAR φ
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Identification in a Proxy SVAR – Impact IRF
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Identification in a Proxy SVAR IRF
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Bigger Model
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