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Introduction

This week, we'll focus on a particular kind of nonlinearity —
time-varying volatiltity.

1. ARCH/GARCH models

2. Stochastic Volatility Models

3. Markov-Switching Models



ARCH

We started the course talking about autoregressive models for
observables y;. Let's allow the variance of y; to vary over time.

The p-th order ARCH model, first used in cite:Engle;ogn

Yyt = W + €t (1)
0‘? = w+a16?_1 +... ‘I’ape%_p (2)
€t = Ot€t €~ N(O, 1) (3)

Key feature: variance of ¢; is time varying and depends on past p
shocks through their squares.

Note: o is known at time t — 1!



ARCH

This means that
Yijt—1 ™~ N(p, U?)

Since E;_1[€?] = E;_1[e?0?] = 02E;_1[€?] = o2.
What about the unconditional expectation: E[o?]

E[of] = Efw+ 0516%_1 +...+ ape%_p]
= w—|—a1E[e%_1]—|—...+apE[e§_p]
= w+oEfof J]E[e] 1]+ ...+ apE[o7 J]E[e] ]
= w—i—alE[a?,l]—l—...—i—aPE[a?fp]

If the unconditonal variance exists, 52 = E[af_j] for all j, so

_2 w

l—a1—...—ap



Stationarity

An ARCH(p) proces is stationary if

l—a1—...—ap>0

We also require «j > 0 for all j. Why?

Some more analytics:

Consider an ARCH(1)

Yo = €t

af = w+ oz1ef_1

e = orer e~ N(0,1).

Then
0’? = w+ Oz1e%71
Uf—i-e%—af = w+a1e%_1+ef—af

6% = w+ 0416%_1 + ef — af
& = wtaeg g +og(e -

2
w + Q1€ 1 + UVt

1)



ARCH(1)

ve = 02(e? — 1) is the volatility surprise:
1. E[l/t] =0

2. E[l/tyt—j] =0

it's white noisel

This means that ¢; follows an AR(1) like process

—0’ —ZQJVt —j

What does the autocorrelation function look like?



Kurtosis

Another property of ARCH models is that the kurtosis of shocks €,
is strictly greater than the kurtosis of a normal.

This might seem strange because €; = o;e; is normal by
assumption.
Elef] _ ElofEcalef]] _ , Elof]

" T E@P T El?Ea[ef]?  E[02P

But we know that V[e?] = E[e}] — E[€?] = E[o}] — E[0?] > 0.

This means that
Elo?]

Elo?]? ~
for o« # 0 we can show this hold strictly.




GARCH

ARCH models typically require many lags to adequately model
conditional variance.

Enter Generalized ARCH (GARCH), introduced by
cite:Bollersleviggs, a parsimonious way of measuring conditional
volatility,

Yo = pte (4)
p p

02 = w+ Z aje%_j + Z Bjaf_j (5)
j=1 j=1

€t = Ot€t €~ N(O, 1) (6)

GARCH is an ARCH model with g additional lags of the conditional
variance.

Call this a GARCH(p,q) model.



GARCH(1,1)

Yr = €
2 2 2
oy = wtaieig+ B0

€t — Ot€t €~ N(O, 1)
We have

af = w4 0416%_1 + f1(w + ale%_Q + 5103—2)

o0 o0
= bt e
j=0

j=0

Conditional variance is a constant plus a weighted average of past
squared innovations.

Would need many lags to match this with an ARCH.

Parameter restrictions to ensure variances are uniformly positive?
Gets very difficult for general GARCH(p,q), see cite:Nelsoniggp.



GARCH(1,1)

Time series model for ¢;

02 = wHae |+ pio?

af—i—ef—af = W+a1€%_1+51‘7?—1+6%—05
€ = whorer+Pies g+ P+
e% = w+ (o1 + 51)65_1 + B1ve—1 + vt

Instead of AR(1), GARCH(1,1) is transformed into an ARMA(1,1)

where v; = €2 — o2 is the volatility surprise.

Unconditional Variance
_ w
o —
1—a;—pr

Autocovariances? Use formulas for autocovariances of ARMAI



More Flavors of ARCH

Exponential GARCH: [Nelson (1991)] model the natural log of
variance rather the variance:

2 ° Et h i 2
—J
o | V= ZVJU : ‘f'ZﬁjI"(Ut—j)
= =1 "t =
No parameter restrictions!
But, more complicated form

But, possible assymetry.

Many other variants possible!



Some Data

Daily Data: 2001-2011

SP 500 Returns

IEM Returns
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Evidence of ARCH

Squared SP 500 Returns

Squared IBEM Returns
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(Less Noisy) Evidence of ARCH

Absolute 5P 500 Returns

Absolute IBEM Returns
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ARCH(5) for S&P 500

"0 38 dm-mmmm oo -
~[[0;31mNameError~~ [[Om Tracebac
~[[0;32m<ipython-input-33-b18ded4cb25c7>"~[[O0m in ~~[[0;36m<modul
~[[1;32m 1~~[[Om ~~[[0;32mfrom~~[[Om ~~[[OmIPython~~[[Om~~[

~[[0;32m----> 2°~[[0;31m ~~[[OmLatex~~[[Om~~[[0;34m(~~[[Om~~[[0;
~[[Om
~[[0;31mNameError~~[[Om: name ’fitted_arch’ is not defined



GARCH(1,1) for S&P 500

~[[0;31mNameError~"[[Om Tracebac
~[[0;32m<ipython-input-35-£c0091775d72>~~[[Om in ~~[[0;36m<modul
~[[0;32m----> 1~ [[0;31m ~~[[OmLatex~~[[Om~~[[0;34m(~~[[Om~~[[O;
~[[Om

~[[0;31mNameError~~[[Om: name ’fitted_garch’ is not defined



EGARCH(1,1,1) for S&P 500

~[[0;31mNameError~~[[Om Tracebac
~[[0;32m<ipython-input-37-a50630fae910>~~[[Om in ~~[[0;36m<modul
~[[0;32m----> 1~ [[0;31m ~~[[OmLatex~~[[Om~~[[0;34m(~~[[Om~~[[O;
~[[Om

~[[0;31mNameError~~[[Om: name ’fitted_egarch’ is not defined



ARCH(5) results

L L0 3 BAMn — = o e
~~[[0;31mNameError~"[[Om Tr:
~~[[0;32m<ipython-input-38-692fe3d6£65d>~~[[Om in ~~[[0;36m
~~[[1;32m 1~~[[Om ~~[[Omfig~~[[Om~~[[0;34m,~~[[Om ~~[[{
~~[[0;32m----> 2~~[[0;31m "~ [[Omfitted_arch~~[[Om~~[[0;34m."
~~[[Om

~~[[0;31mNameError~~[[Om: name ’fitted_arch’ is not defined
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GARCH(1,1) results

L0531 M- mmmm e e e e
~~[[0;31mNameError~"[[Om Tr:
~~[[0;32m<ipython-input-39-d43ebe8803cc>~~[[Om in ~~[[0;36m
~~[[0;32m----> 1~~[[0;31m ~~[[Omfitted_garch~~[[Om~~[[0;34m
~~[[Om

~~[[0;31mNameError~~[[Om: name ’fitted_garch’ is not define



EGARCH(1,1,1) results

L0531 M- mmmm e e e e
~~[[0;31mNameError~"[[Om Tr:
~~[[0;32m<ipython-input-40-310£1d053£53>~~[[Om in ~~[[0;36m
~~[[0;32m----> 1~~[[0;31m ~~[[Omfitted_egarch~~[[Om~~[[0;34
~~[[Om

~~[[0;31mNameError~~[[Om: name ’fitted_egarch’ is not defin



Stochastic Volatility

Consider the stochastic volatlity model

o
— ~—

Yo = p+oie (
In(07) = w+arln(of_y) +& (
ec ~ N(0,1) and & ~ N(0,07) (

©
~

This is different from (G)ARCH: there is volatility specific shock.

1. More flexible + link up better to some continuous time asset
pricing models.
2. Much harder to estimate

2.1 GMM: cite:Wigginsjgg7.
2.2 Quasi MLE: cite:Harveyig94.
2.3 Bayesian Approach: cite:JPR94.

Connections to GARCH: see cite:Flemingygos.



SV vs. GARCH

1. Some studies have found superiority of SV models of
GARCH-—cite:kimshephardchib1998.

2. But, of course, GARCH models are much easier to estimate.
3. Both are used.
Let's estimate an SV model for the SP 500 returns.

I'm going to do an Bayesian analysis with a; = 1 (random walk!)
Priors: u~ Exp(1l),0 ~ Exp(1/0.02),

I'm going to use an MCMC sampler designed for this kind of
model.

It takes about 20 minutes to estimate [GARCH is basically instant]



SV

vs. EGARCH

= [[0;8 M- mmm m e
~~[[0;31mNameError~" [ [Om Tr:
~~[[0;32m<ipython-input-42-b5076a34bed0>~"~[[Om in ~~[[0;36m
~~[[0;32m----> 1~~[[0;31m ~~[[Omsv~"[[Om ~~[[0;34m=""[[Om ~

~~[[O0m~~[[1;32m 2~~[[Om ~~[[Omax~~[[Om ~~[[0;34m=""[[0r
~~[[1;32m 3~ [[Om ~~[[Omfitted_egarch~~[[Om~~[[0;34m."
~~[[1;32m 4~~[[O0m ~~[[Omax~~[[Om~~[[0;34m.~~[[Om~~ [ [Om.

~~[[0;31mNameError~"[[Om: name ’trace’ is not defined



SV vs. EGARCH (2005)

= [[0;8 M- mmm m e
~~[[0;31mNameError~~[[Om Tr.
~~[[0;32m<ipython-input-43-fe4883815d9a>~~[[Om in ~~[[0;36m
~~[[0;32m----> 1~~[[0;31m ~~[[Omsv~"[[Om ~~[[0;34m=""[[Om ~

~~[[O0m~~[[1;32m 2~~[[Om ~~[[Omax~~[[Om ~~[[0;34m=""[[0r
~~[[1;32m 3~ [[Om ~~[[Omfitted_egarch~~[[Om~~[[0;34m."
~~[[1;32m 4~~[[O0m ~~[[Omax~~[[Om~~[[0;34m.~~[[Om~~ [ [Om.

~~[[0;31mNameError~"[[Om: name ’trace’ is not defined



A famous SV paper. ..

cite:STOCKgo7: “Why Has Inflation Become Harder to Forecast?”
Journal of Money, Credit, and Banking.

Has inflation become harder to forecast recently?
1. No, MSE of forecasts has gone down.
2. Yes, improvement of “structural’ models relative to univariate
ones have diminished.
Propose an Unobserved Components-Stochastic Volatility (UC-SV)
model for inflation:

Tt = Te+Ne, Ner~ N(O, Urz),t)

Tt = Ti—1+€, €~ N(O,ait)
In a%t = In 072”_1 + Upt, Ve ~ N(O,fyz)
In af’t = In ait_l + Vet,~ N(0,72)

Tt = permanent (stochastic) trend inflation
n¢ = transitory component.



Inflation

Inflation

B

1960 1870 1580 1550 2000



Estimation

There are no parameters to estimate, as SW set v = 0.2.
Still have to filter the volatilities {0, ¢}/, and {oe}/_;.

SW use a Markov-chain Monte Carlo (MCMC) technique to do
this.

Compare this to a time-varying Integrated Moving Average (IMA)
model:

Amy = (1 —0:L)er, e ~ iid(0,02). (10)
UC-SV model implies that:

g 1-V1-4a oy
‘ 2a © T 602,402,



Results

L0033 A~ mmm o
~~[[0;31mNameError~"[[Om Tr
~~[[0;32m<ipython-input-45-6447£f4614425>~~[[Om in ~~[[0;36m
~~[[0;32m----> 1~~[[0;31m ~~[[Omsigma_eps~~[[Om ~~[[0;34m=""

~~[[Om~~[[1;32m 2~ [[Om ~~[[Omsigma_eta~~[[Om ~~[[0;34:
~~[[1;32m 3~ [[Om ~~[[Omtheta~~[[Om ~~[[0;34m=""[[0m ~
~~[[1;32m 4~~[[Om ~~[[Omtitle~~[[Om ~~[[0;34m=""[[Om ~
~~[[1;32m 5~~[[Om ~~[[Omfig~~[[Om~~[[0;34m,"~~[[Om~~[[O:

~~[[0;31mNameError~~[[Om: name ’tracesw’ is not defined



Discussion

» SD of permanent component: 1970s through 1983 = high
volatility, 1950s-1960s = moderate volatility, post-83 = low
volatility

» SD of transitory component: little change

» IMA estimate: moderate in early sample, falling in the 70s,
increasing sharply thereafter.



Markov Switching

Markov Switching — exogenous switching in parameters

Useful references:
» Hamilton, Chapter 22.
» cite:KimNelson1999



US GDP growth
Suppose we want to model U.S. GDP growth as a stationary AR(1):

Ve =W+ oyi—1+ e, €~ N(0,02)-

1570 1580 1530 2000 2010
DATE



Estimation Results

We get point estimates: (1 — )i = 0.5, p = 0.31. How does it fit?
Look at residuals.

residuals
3
2
1
a
-1
-2
1970 1980 1930 000 010

DATE



Residuals, pre and post 1984

1. The standard deviation is considerable smaller post 1984 (even
with GR!)

2. While this is only suggestive, indicates there was a break in
series.

3. What has broken once, can break again. How to incorporate?



Markov Switching

Let's consider the following representation:

Yt = p(st) + pyr—1+ €, €N(O, 02(5t))

The mean and variance are now functions of an unobserved discrete
random variable: s;.

Call realization of s; the state (or regime) that discrete random
variable takes.

> st =1, u(st) = p1,0°(st) = of
> st =2, u(st) = pa,0°(st) = 03
We need an description for time series. A simple model is a Markov
chain!

Let's also set p = 0 for now, for simplicity.



Markov Chains, continued

We talked about Markov Chains when we talked about Markov
Chain Monte Carlo. Let's review.

Suppose s; is an RV that takes values in {1,2,..., N}. The
probabilitiy distribution for s; depends only one the past through
it's most recent realization s;_1.

P(St :j’St_]_ = i,St_z = k,.. ) = P(St :j’.st_]_ = I) = le
pij is the probability of state jgiven state i last period.

Note that

N
Zp,-jzl, fori=1,...,N.
j=1



Markov Chains, continued

Stack these probablity in a matrix.

pi1 p21 - PN
p_ P.12 P.22 P/.vz (11)
P/-v1 PI.\Il -+ PNN
Let & =[1,0,0,...,0] whens; =1, & =10,1,0,...,0] when

s¢ = 2, and so on. ThIS means that

E[£t+1|£t] = E[ft+1|£t,§t717 . ] = P&:.
We represent our Markov Chain as
§ev1 = P& +ve, Ve = 1 — E[e41(&]

v¢ is an Martingale Difference Series: mean zero and impossible to
forecast using previous states.



Forecasting with Markov Chain

Ctbm =Veem + Preym—_1 + P2Vt+m_2 +...+ PT&

This means that
E[§t+m|ft] = Pmﬁt-

The probability that a state from regime i will be followed m
periods later by a realization of state j is given by the jth row, ith
column element of P™.

Concepts:

1. reducibility: if the chain is vanishing, in the sense that once
you visit a state, you will not return to some other states. Not
reducible? {irreducible

2. ergodicity: An irreducible MC is ergodoc, is ergodic is there
exists a probability vector 7w such that Pw = .



More MC

1. An ergodic Markov Chain is a covariance stationary process,
2. But, the VAR has a unit root in it!
3. Magic: the variance matrix of v; is singular.

Calculating ergodic probabilty:

Pr =mand I'r = 1.
So

|- P
[ 1/ :|7T:A7T:eN+1
This means that 7 = (A’A)"1A'e,. 1.

Periodic markov chain: there is more than one 7w s.t. Pm = .



Analyzing Mixtures of Normals

With p =0, y; is normally distributed conditional on s;.

_ )2
exp — (ye — 1)

(elst = i 0) = ——
Sy — ' g
p\Yyt|st = J 2ﬂ_gj 2012

We also know that P(A and B) = P(A|B)p(B). So:

2
. Y — K
p(ye. st = j;0) = > _e><p—( t2 f’) x p(st = J)
7TO'J O'j

If p(st = j;6) = mj, we have

EN: 1 (ve — 117)? ﬁ
p(ye: 0) = exp — 5 X7, p(YiT:0) = | | p(ye: 0)

O /270 20j P

This is a mixture of normals.



Mixture of N(0,1) and N(2,8), m = 0.6.

040
035
030
025
0z
015
Q010
005

0od

you can make some pretty crazy (any) distributions with mixture of
normals.



More on Mixtures
How to infer which state I'm in? Bayes Rule!
plyelst = j: 0)p(st = J; 0)
p(ye; 0)

p(st = jly:: 0) =

Plsy =1; y¢) as function of y;

05

04

02

01

oo




How to estimate Mixtures

One can show that the MLE's of § = [, o, 7| are

A Zthl yep(st = jlyt, é) . N
:u_] - T R ~ 9 J - 17 M
> i1 P(st = jlyt, 0)
2 il — m)?p(se =jlve.0) 1,...,N
’ S p(se = jlye, 0)

-
T o= Z St—J‘yty

t=1

Recall, we get p(s: = jlyt, 0) from applying Bayes rule.

This forms a system of nonlinear equations, which in principal can
be solved.

Another way. ..



The EM Algorithm

A simple iterative procedure:

1. Guess arbitrary éo,

2. Plugin in to RHS of above equations, get §*
3. if |8 — 8| < €, you've found a maximum
4

. otherwise continuing iterating

This is called the EM Algorithm.
1. Each iteration increases the value of the likelihood function
2. Usually works very fast

3. Not guaranteed to find a global max, but generally robust.



Issues in optimization

1. if fij = y; for some j and y;, we're in trouble, because the max
will send o; — 0.
2. This makes the log-likelihood go to infinity

3. More generally: there is a labeling issue: (p1,0%) could easily
be called (u2,03) and vice versa.
4. This calls for augmenting the problem with more information.

4.1 Coherent way: Bayesian Approach, see cite:KimNelson1999.

4.2 Ad hoc way: augment the likliehood with a penalty function to
enforce priors views and make pathologies less likely. See
cite:Hamilton.



Markov Switching

Markov Switching models are more complicated versions of the
mixture model.

Instead of just m = [m1,...,7y] we need to estimate P
pi1r P21 - PN
p_ P-12 P.22 P/.vz (12)
Pn1 PN1 .- PNN

Key item is again: distribution of states conditional on data.

Now we need to consider entire history of data, because of
Markovian structure.

£t|t = [p(st = 1|Y1.6:0),...,p(st = N|Y1:t—1;‘9)]/
We can also think about the forecast of this probability distribution

§t|t—1'



Deriving the likelihood
The joint distribution of y; and s; given Yi.;_1 is given by
p(ye, st = j| Yi.e-1,0) = p(ytlse = J, Yi.e—1,0)p(se = j| Y1.t-1;6)
Let Nt = [P(Yt|5t =1, Y1¢-1; 9)7 s P(Yt|5t =N, Yii-1; 9)]/-

Recall &—1 = [p(se = 1| Y1:e-1;0), ..., p(st = N|Y1.e-1: 0)]'

Then p(ye, st = j| Yie-1:0) = Eje1 © .

N
p(ye| Yi:e-1;0) = Z p(ye, st = j|Yie-1,0) = 1/(‘§t|t—1 © 1nt)
j=1

The log likelihood is

-
Z logp(ye| Y1:t—1;0) Z log ( ft|t 10 nt))

Jj=1

Now to cet a recursion for £.1. -



Recursion for &jp—1

Use Bayes rule

P(Yt|5t =/ Q)P(St :j| Yit-1; 9)

st = j|Y1.1;0) =
p(se = j|Y1.7:0) p(ye| Y1:t-1;0)

Which is just

(ét|t71 ©nt)

P(St:j|Y1:T?9):§tt: 2
| V(&eje—1 ©me)

To get forecast:

Eel€es1| Ya.7] = PE[&e| Yi.7] + Ee[ve| Yi.7] = Péyys

And we're donel



Smoothed Probabilities

Kim Algorithm:
Do this stuff “backwards':

ét\T = ét\t © [P/[ét+1/ét+1|t]]

Estimation

1. Hamilton: If initial probablities are unrelated

pii = EfT:?”(Sf =Jj,se =1i|Yu1;0)

pij = .
Yoip p(st-1 = i; Yr.70)

2. Otherwise, a bit more complicated

3. either way use EM algorithm.



Back to Example

Dep. Variable: GDPC1
Model: MarkovAutoregression
Date: Thu, 13 Mar 2025
Time: 17:48:02
Sample: 04-01-1964
- 01-01-2016

Covariance Type: approx

coef std err z

const 0.7393 0.066 11.280
sigma2 0.2301 0.035 6.557
coef std err z
const 0.7114  0.168 4.239
sigma2 1.1565 0.197 5.862

coef std err z
ar.L1 0.2834 0.074 3.847
coef  std err z

p[0->0] 0.9792 0.018 53.932
p[1->0] 0.0289 0.027 1.071
Varnings:

No. Observations: 207
Log Likelihood -220.722
AIC 455.444
BIC 478.773
HQIC 464.878
P> |z|] [0.025 0.975]

0.000 0.611 0.868

0.000 0.161 0.299

P> |z| [0.025 0.975]

0.000 0.382 1.040

0.000 0.770 1.543

P> |z|] [0.025 0.975]

0.000 0.139 0.428

P> |z| [0.025 0.975]

0.000 0.944 1.015

0.284 -0.024 0.082

1] Covariance matrix calculated using numerical (complex-step) differentiation.



Smoothed Probabilities
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