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Background

▶ Overview: Chapters 6 from Hamilton (1994).
▶ Technical Details: Chapter 4 from Brockwell and Davis (1987).
▶ Other stuff: You might want to look at a digital signals

processing textbook, for example: here.

http://www.sp4comm.org/docs/sp4comm_corrected.pdf


Cycles as Frequencies

Starting In the 19th Century, economists and others recognized
cyclical patterns in economic activity.
Schmupeter distinguished between cycles at different frequencies
▶ Kondratieff Cycles – Longwave cycles lasting 50 years (caused

by fundamental innovations.)
▶ Juglar Cycles – medium cycle (8 years) associated with

changes in credit condition.
▶ Kitchin Cycles – short run cycles (40 months) associated with

information diffusion.
=> model economic activity as a linear combination of periodic
function with different frequencies.



A model of frequencies

Consider the following model for quarterly observations

Xt = 2
m∑
j=1

ajcos(ωj t + θj)

where θj is ∼ iidU[−π, π] and −π ≤ ωj < ωj+1 ≤ π. The random
variables θj are determined in the infinite past and simply cause a
phase shift. According to Schumpeter’s hypothesis m should be
equal to three. The frequencies ωj can be determined as follows.

Cycle Duration Frequency
Kondratieff 200 quarters ω1 = (2π)/200 = 0.03
Juglar 32 quarters ω2 = (2π)/32 = 0.20
Kitchin 13.3 quarters ω3 = (2π)/13.3 = 0.47



A Time Series of this process

a = [5, 2, 1], ω = [0.03, 0.20, 047].



The Spectrum

▶ The coefficients a1 to a3 are the amplitudes of the different
cycles

▶ If a1 and a2 are small then most of the variation in Xt is due
to the Kitchin cycles.

▶ The plot of a2
j versus ω is called the spectrum of Xt .



Some math

cos(x + y) = cos x cos y − sin x sin y (1)

sin x sin y =
1
2
[cos(x − y)− cos(x + y)] (2)

cos x cos y =
1
2
[cos(x − y) + cos(x + y)] (3)

2 sin2 x = 1 − cos(2x) (4)

sin x cos x =
1
2
sin(2x) (5)

Moreover, sin2 x + cos2 x = 1.
We consider real-valued stochastic processes Xt , complex numbers
will help us summarize sine and cosine expressions using
exponential functions.



More Math

Let i =
√
−1.

Euler’s formula:
e iφ = cosφ+ i sinφ

The formula becomes less mysterious if you rewrite e iφ, sinφ, and
cosφ as power series.



The Plan

▶ Rewrite Schumpeter Model

▶ Define spectral distribution / density function

▶ Examine relationship between autocovariances {γh}∞h=−∞ and
the spectrum.

▶ Discuss very general spectral representation for a stationary
stochastic process Xt .



Schumpeter Model

Xt = 2
m∑
j=1

aj cos θj cos(ωj t)− aj sin θj sin(ωj t)

where aj cos θj and aj sin θj can be regarded as random coefficients.
Eulers formula implies

Xt =
m∑

j=−m

A(ωj)e
iωj t

where ω−j = −ωj . Let a−j = aj and



This means that

A(ωj) =

{
aj(cos θ|j | + i sin θ|j |) if j > 0
aj(cos θ|j | − i sin θ|j |) if j < 0

We can verify that:

A(ωj)e
iωj t +A(ω−j)e

−iωj t = 2 [aj cos θj cos(ωj t)− aj sin θj sin(ωj t)]



Moments of Linear Cyclical Models

E[cos θj ] =
1
2π

∫ π

−π
cos θjdθj = 0 (6)

E[sin θj ] =
1
2π

∫ π

−π
sin θjdθj = 0 (7)

Result: The expectation of Xt in the linear cyclical model is equal
to zero. □



Autocovariances

To obtain the autocovariances γh = E[XtXt−h] we have to
calculate the moments E[A(ωj)A(ωk)].
Let j ̸= k , j ̸= −k . Suppose that j , k > 0.

E[A(ωj)A(ωk)] = ajakE[(cos θj + i sin θj)(cos θk + i sin θk)]

= ajakE[cos θj cos θk + i cos θj sin θk i cos θk sin θj − sin θj sin θk ]

= 0 (8)

Since θj and θk are independent. Similar arguments can be made if
j and k have different signs.



Covariance

Let j = k . Suppose that j , k > 0.

E[A(ωj)A(ωk)] = a2
j E[(cos θj + i sin θj)

2]

= a2
j E[(cos2 θj − sin2 θj + i2 cos θj sin θj ]

= a2
j E[1 − 2 sin2 θj + i2 cos θj sin θj ]

= a2
j E[cos(2θj) + i sin(2θj)]

= 0 (9)

In the last step we use the fact that sine and cosine integrate to
zero over two cycles. A similar argument can be made for the case
j , k < 0
Let j = −k . Now A(ωj) and A(ωk) are complex conjugates.

E[A(ωj)A(ω−j)] = a2
j E[cos2 θj + sin2 θj ] = a2

j



The upshot

Result: The autocovariances of the process Xt generated by the
linear cyclical model are given by

γh = E[XtXt−h]

=
m∑

j=−m

m∑
k=−m

E[A(ωj)A(ωk)]e
iωj te iωk (t−h)

=
m∑

j=−m

E[A(ωj)A(ωj)]e
iωjh =

m∑
j=−m

a2
j e

iωjh (10)

Since Xt is a real valued process the autocovariances can also be
written as

γh = 2
m∑
j=1

a2
j cos(ωjh) □



The Spectral Distribution

The spectral distribution function for the process Xt , defined on the
interval ω ∈ (−π, π), is

S(ω) =
m∑

j=−m

E[A(ωj)A(ωj)]{ωj ≤ ω}

where {ωj ≤ ω} denotes the indicator function that is one if
ωj ≤ ω. □



Remarks

The spectral distribution is non-negative and continuous from the
right.
If the spectral distribution function is evaluated at ω = π we obtain

S(π) =
m∑

j=−m

E[A(ωj)A(ωj)] =
m∑

j=−m

a2
j = E[X 2

t ] (11)

The spectral distribution function is symmetric in the sense that for
ω > 0

S(−ω) = S(π)− lim
n→∞

S((ω − 1/n)) (12)



Autocovariances, again

The representation of the autocovariances can be expressed as a
Riemann-Stieltjes integral. Define a sequence of grids

[ω](n) = {ω(n)
k = 2πk/n − π}

and ∆nω = ω
(n)
k+1 − ω

(n)
k = 2π/n. Moreover, let

∆nS(ω) = S(ω)− S(ω −∆nω)

Roughly,
n∑

k=0

e iω
(n)
k h∆nS(ω

(n)
k ) −→

m∑
j=−m

a2
j e

iωjh

as n → ∞.



The Upshot

Thus, we can express the autocovariance γh as the following
integral

γh =

∫
(−π,π]

e iωhdS(ω)

By using a similar argument, we can also obtain a integral
representation for the stochastic process Xt . Define the stochastic
process

Z (ω) =
m∑

j=−m

A(ωj){ωj ≤ ω}

with orthogonal increments ∆nZ (ω) = Z (ω)− Z (ω −∆nω). Note
that the increments are now random variables.



Very roughly,

n∑
k=0

e iω
(n)
k t∆nZ (ω

(n)
k ) −→

m∑
j=−m

A(ωj)e
iωj t

almost surely as n → ∞. Thus, we can express the stochastic
process Xt , generated from the linear cyclical model, as the
stochastic integral

Xt =

∫
(−π,π]

e iωtdZ (ω)



Spectral Representation for Stationary Processes

Every zero-mean stationary process has a representation of the form

Xt =

∫
(−π,π]

e iωhdZ (ω)

where Z (ω) is a orthogonal increment process. Correspondingly, its
autocovariance function γh can be expressed as

γh =

∫
(−π,π]

e iωhdS(ω)

where S(ω) is a non-decreasing right continuous function with
S(π) = E[X 2

t ] = γ0.



Spectral Density Function

Suppose the spectral distribution function is differentiable with
respect to ω on the interval (−π, π]. The spectral density function
is defined as

s(ω) = dS(ω)/dω

If a process has a spectral density function s(ω) then the
covariances can be expressed as

γh =

∫
(−π,π]

e ihωs(ω)dω

The spectral density uniquely determines the entire sequence of
autocovariances. Moreover, the converse is also true.



Consider the sum

sn(ω)
∗ =

1
2π

n∑
h=−n

γhe
−iωh

=
1
2π

n∑
h=−n

[∫
(−π,π]

e iτhs(τ)dτ

]
e−iωh (13)

The sum s∗n(ω) is a Fourier series. If the spectral density s(ω) is
piecewise smooth then

s∗n(ω) −→ s(ω)

Thus, the spectral density can be obtained by evaluating the
autocovariance generating function of Xt at z = e−iω.

s(ω) =
1
2π
γ(e−iω) =

1
2π

∞∑
h=−∞

γhe
−iωh

where

γ(z) =
∞∑

j=−∞
γjz

j



Filter

Suppose sX (ω) is the spectral density function of a process Xt .
Filters are used to dampen or amplify the spectral density at certain
frequencies. The spectrum of the filtered series Yt is given by

sY (ω) = f (ω)sX (ω).

where f (ω) is the filter function.
Frequency domain trend/cycle analogue
Xt = low frequency component + high frequency component
Example: For Schumpeter, Kitchin cycle was shortest with
ω = 0.47. To remove the effects of other cycles from data, we
could use the filter

f (ω) =

{
0 if ω < 0.4
1 otherwise



Hodrick Prescott filter

A popular filter in the real business cycle literature in
macro-economics is the so-called Hodrick Prescott filter.

f HP(ω) =

[
16 sin4(ω/2)

1/1600 + 16 sin4(ω/2)

]2

.

This filter basically kills long cycles and attenuates medium term
ones.
(See Soderlind, 1994.)



HP Filter

f(2pi/64) = 0.016697846612617945 f(2pi/32) = 0.4937014515264561 f(2pi/16) = 0.9481735523836959



More on Filters

Subsquently we will consider filters that are linear in the time
domain, namely, filters of the form,

Yt =
J∑

h=1

chXt−h = C (L)Xt

where C (z) is the polynomial function
∑J

h=1 chz
h. Recall that

Xt =
m∑

j=−m

A(ωj)e
iωj t



This means that
Hence,

Xt−h =
m∑

j=−m

A(ωj)e
iωj te−iωjh

Yt = C (L)Xt =
J∑

h=1

chXt−h

=
m∑

j=−m

[
A(ωj)e

iωj t
J∑

h=1

che
−iωjh

]

=
m∑

j=−m

A(ωj)C (e−iωj )e iωj t

=
m∑

j=−m

Ã(ωj)e
iωj t (14)



Autocovariance

The autocovariances of Yt can therefore be expressed as

E[YtYt−h] =
m∑

j=−m

a2
j C (e−iωj )C (e iωj )e iωjh

Thus, we can define the spectral distribution function of Yt as

SY (ω) =
m∑

j=−m

a2
j C (e−iωj )C (e iωj )

with increments

∆SY (ωj) = ∆SXC (e−iωj )C (e iωj )



Generalization

Result: Suppose that Xt has a spectral density function sX (ω) and
Yt = C (L)Xt , then the spectral density of the filtered process Yt is
given by

sY (ω) = |C (e−iω)|2sX (ω)

The function C (e−iω) is called transfer function of the filter, and
the filter function f (ω) = |C (e−iω)|2 is often called power transfer
function. □



Examples of Spectrum

White Noise

s(ω) =
1
2π

∞∑
h=−∞

γhe
−iωh =

γ0

2π

An AR(1): Yt = ϕYt−1 + Xt

Interpret as a linear filter with MA(∞) rep: Yt =
∑∞

h=0 ϕ
hXt−h.

Thus:

|C (e−iω)|2 =
∣∣[1 − ϕe−iω]−1∣∣2

=
[
|1 − ϕ cosω + iϕ sinω|2

]−1

=
[
(1 − ϕ cosω)2 + ϕ2 sin2 ω

]−1

=
[
1 − 2ϕ cosω + ϕ2(cosω2 + sin2 ω)

]−1
. (15)

which means sY (ω) =
σ2/2π

1+ϕ2−2ϕ cosω
. Note sY (0) −→ ∞ as ϕ −→ 1



More Examples

Stationary ARMA process*: ϕ(L)Yt = θ(L)Xt with Xt ∼ WN. The
spectral density is given by

sY (ω) =

∣∣∣∣ θ(e−iω)

ϕ(e−iω)

∣∣∣∣2 σ2

Sums of processes. Suppose that Wt = Yt + Xt . The spectrum of
the process Wt is simply the sum

sW (ω) = sY (ω) + sX (ω)



Visual

<matplotlib.legend.Legend at 0x7faa7a47b490>



Estimation

1. Parametric – Pick an ARMA process, estimate in time domain,
use filtering results to get spectrum.

2. Nonparametric – Estimate autocovariances {γ̂h}, directly write
down spectral density. Let’s look at this.



Let ȳ = 1
T

∑
yt and define the sample covariances

γ̂h =
1
T

T∑
t=h+1

(yt − ȳ)(yt−h − ȳ)

An intuitively plausible estimate of the spectrum is the sample
periodogram

IT (ω) =
1
2π

T−1∑
j=−T+1

γ̂he
−iωh

=
1
2π

(
γ̂0 + 2

T−1∑
h=1

γ̂h cos(ωh)

)
(16)

Result: The sample periodogram is an asymptotically unbiased
estimator of the population spectrum, that is,

E[IT (ω)]
p−→ s(ω) (17)

However, it is inconsistent since the variance var [IT (ω)] does not
converge to zero as the sample size tends to infinity. □



Smoothed Periodogram
Smoothing: get non-parametric estimators.
To obtain a spectral density estimate at the frequency ω = ω∗ we
will compute the sample periodogram IT (ω) for some ωj ’s in the
neighborhood of ω∗ and simply average them. Define the following
band around ω∗:

B(ω∗|λ) =
{
ω : ω∗ −

λ

2
< ω ≤ ω∗ +

λ

2

}
(18)

The bandwidth is λ, where λ is a parameter. Moreover, define the
“fundamental frequencies” (see Hamilton 1994, Chapter 6.2, for a
discussion why these frequencies are “fundamental”)

ωj = j
2π
T

j = 1, . . . , (T − 1)/2 (19)

iThe number of fundamental frequencies in the band B(ω∗) is

m = ⌊λT (2π)−1⌋ (20)



Smoothed Periodogram

The smoothed periodogram estimator of s(ω∗) is defined as the
average

ŝ(ω) =

(T−1)/2∑
j=1

1
m
{ωj ∈ B(ω∗|λ)}IT (ωj) (21)

where {ωj ∈ B(ω∗|λ)} is the indicator function that is equal to one
if ωj ∈ B(ω∗|λ) and zero otherwise.

Result: The smoothed periodogram estimator ŝ(ω∗) of s(ω∗) is
consistent, provided that the bandwidth shrinks to zero, that is,
λ→ 0 as T → ∞ and the number of ωj ’s in the band B(ω∗|λ)
tends to infinity, that is $ m = λ T/(2π) → ∞$. □



Remarks

▶ get smoothed estimates => need to get λ. Ultimately
subective.

▶ Most non-parameterics approaches are based on “Kernel
estimates”

The expression {ωj ∈ B(ω∗)} can be rewritten as follows

{ωj ∈ B(ω∗)} =

{
ω∗ −

λ

2
< ωj ≤ ω∗ +

λ

2

}
=

{
−1

2
<
ωj − ω∗

λ
≤ 1

2

}
(22)

Define

K

(
ωj − ω∗

λ

)
=

{
−1

2
<
ωj − ω∗

λ
≤ 1

2

}
(23)



It can be easily verified that∫
K

(
ωj − ω∗

λ

)
dω∗ = 1 (24)

The function K
(
ωj−ω∗

λ

)
is an example of a Kernel function. In

general, a Kernel has the property
∫
K (x)dx = 1. Since

m ≈ λ(T − 1)/2, the spectral estimator can be rewritten as

ŝ(ω) =
π

λ(T − 1)/2

(T−1)/2∑
j=1

K

(
ωj − ω∗

λ

)
IT (ωj) (25)



Application: IP



<matplotlib.legend.Legend at 0x7faa9dd87100>



Application: Autocorrelation Consistent Standard Errors

Consider the model

yt = βxt + ut , ut = ψ(L)ϵt , ϵt ∼ iid(0, σ2) (26)

The OLS estimator is given by

β̂ − β =

∑
xtut∑
x2
t

(27)

The conventional standard error estimates for β̂ are inconsistent if
the ut ’s are serially correlated. However, we can construct a
consistent estimate based on non-parametric spectral density
estimation. Define zt = xtut . We want to obtain an estimate of

plim ΛT = plim
1
T

T∑
t=1

T∑
h=1

E [ztzh] (28)



It can be verified that

∞∑
h=−∞

γzz,h −
1
T

T∑
t=1

T∑
h=1

E [ztzh]
p−→ 0 (29)

Since

s(ω) =
1
2π

∞∑
h=−∞

γzz,he
−iωh (30)

it follows that a consistent estimator of plim ΛT is

Λ̂T = 2πŝ(0) (31)

where ŝ(0) is a non-parametric spectral estimate at frequency zero.



Application: Beaudry, Galizia, and Portier (2020)

Paul Beaudry, Dana Galiza, and Franck Portier (2016): “Putting the
Cycle Back into Business Cycle Analysis,” NBER Working Paper.
▶ Re-examines the spectral properties of several cyclically

sensitive variables such as hours worked, unemployment and
capacity utilization.

▶ Document the presence of an important peak in the spectral
density at a periodicity of approximately 36-40 quarters.

▶ This is cyclical phenomena at the “long end” of the business
cycle.

▶ Suggests a model (“limit cycles”) to account for this finding.



The Paper in 1 Picture
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