ECON 616: Lecture Three: The Spectrum

Ed Herbst

Last Updated: March 13, 2025

Background

- Overview: Chapters 6 from Hamilton (1994).
- ► Technical Details: Chapter 4 from Brockwell and Davis (1987).
- Other stuff: You might want to look at a digital signals processing textbook, for example: here.

Cycles as Frequencies

Starting In the 19th Century, economists and others recognized cyclical patterns in economic activity.

Schmupeter distinguished between cycles at different frequencies

- Kondratieff Cycles Longwave cycles lasting 50 years (caused by fundamental innovations.)
- Juglar Cycles medium cycle (8 years) associated with changes in credit condition.
- Kitchin Cycles short run cycles (40 months) associated with information diffusion.

=> model economic activity as a linear combination of periodic function with different frequencies.

A model of frequencies

Consider the following model for quarterly observations

$$X_t = 2\sum_{j=1}^m a_j cos(\omega_j t + heta_j)$$

where θ_j is $\sim iidU[-\pi, \pi]$ and $-\pi \leq \omega_j < \omega_{j+1} \leq \pi$. The random variables θ_j are determined in the infinite past and simply cause a phase shift. According to Schumpeter's hypothesis *m* should be equal to three. The frequencies ω_j can be determined as follows.

Cycle	Duration	Frequency
Kondratieff	200 quarters	$\omega_1 = (2\pi)/200 = 0.03$
Juglar	32 quarters	$\omega_2 = (2\pi)/32 = 0.20$
Kitchin	13.3 quarters	$\omega_3 = (2\pi)/13.3 = 0.47$

A Time Series of this process

$$a = [5, 2, 1], \quad \omega = [0.03, 0.20, 047].$$

The Spectrum

- The coefficients a₁ to a₃ are the amplitudes of the different cycles
- If a₁ and a₂ are small then most of the variation in X_t is due to the Kitchin cycles.

• The plot of
$$a_j^2$$
 versus ω is called the spectrum of X_t .

Some math

$$\cos(x+y) = \cos x \cos y - \sin x \sin y \tag{1}$$

$$\sin x \sin y = \frac{1}{2} [\cos(x - y) - \cos(x + y)]$$
 (2)

$$\cos x \cos y = \frac{1}{2} [\cos(x - y) + \cos(x + y)]$$
 (3)

$$2\sin^2 x = 1 - \cos(2x)$$
 (4)

$$\sin x \cos x = \frac{1}{2} \sin(2x) \tag{5}$$

Moreover, $\sin^2 x + \cos^2 x = 1$.

We consider real-valued stochastic processes X_t , complex numbers will help us summarize sine and cosine expressions using exponential functions.

More Math

Let $i = \sqrt{-1}$.

Euler's formula:

$$e^{i\varphi} = \cos\varphi + i\sin\varphi$$

The formula becomes less mysterious if you rewrite $e^{i\varphi}$, sin φ , and cos φ as power series.

The Plan

Rewrite Schumpeter Model

Define spectral distribution / density function

• Examine relationship between autocovariances $\{\gamma_h\}_{h=-\infty}^{\infty}$ and the spectrum.

 Discuss very general spectral representation for a stationary stochastic process X_t.

Schumpeter Model

$$X_t = 2\sum_{j=1}^m a_j \cos \theta_j \cos(\omega_j t) - a_j \sin \theta_j \sin(\omega_j t)$$

where $a_j \cos \theta_j$ and $a_j \sin \theta_j$ can be regarded as random coefficients. Eulers formula implies

$$X_t = \sum_{j=-m}^m A(\omega_j) e^{i\omega_j t}$$

where $\omega_{-j} = -\omega_j$. Let $a_{-j} = a_j$ and

This means that

$$A(\omega_j) = \begin{cases} a_j(\cos\theta_{|j|} + i\sin\theta_{|j|}) & \text{if } j > 0\\ a_j(\cos\theta_{|j|} - i\sin\theta_{|j|}) & \text{if } j < 0 \end{cases}$$

We can verify that:

$$A(\omega_j)e^{i\omega_j t} + A(\omega_{-j})e^{-i\omega_j t} = 2\left[a_j\cos\theta_j\cos(\omega_j t) - a_j\sin\theta_j\sin(\omega_j t)\right]$$

Moments of Linear Cyclical Models

$$\mathbb{E}[\cos \theta_j] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos \theta_j d\theta_j = 0$$
(6)
$$\mathbb{E}[\sin \theta_j] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \sin \theta_j d\theta_j = 0$$
(7)

Result: The expectation of X_t in the linear cyclical model is equal to zero. \Box

Autocovariances

To obtain the autocovariances $\gamma_h = \mathbb{E}[X_t X_{t-h}]$ we have to calculate the moments $\mathbb{E}[A(\omega_j)A(\omega_k)]$. Let $j \neq k, j \neq -k$. Suppose that j, k > 0.

$$\mathbb{E}[A(\omega_j)A(\omega_k)] = a_j a_k \mathbb{E}[(\cos \theta_j + i \sin \theta_j)(\cos \theta_k + i \sin \theta_k)]$$

= $a_j a_k \mathbb{E}[\cos \theta_j \cos \theta_k + i \cos \theta_j \sin \theta_k i \cos \theta_k \sin \theta_j - \sin \theta_k i \cos \theta_k \sin \theta_j - \sin \theta_k \sin \theta_j - \sin \theta_k \sin \theta_j - \sin \theta_k \sin \theta$

Since θ_j and θ_k are independent. Similar arguments can be made if j and k have different signs.

Covariance

Let j = k. Suppose that j, k > 0. $\mathbb{E}[A(\omega_j)A(\omega_k)] = a_j^2 \mathbb{E}[(\cos \theta_j + i \sin \theta_j)^2]$ $= a_j^2 \mathbb{E}[(\cos^2 \theta_j - \sin^2 \theta_j + i 2 \cos \theta_j \sin \theta_j]$ $= a_j^2 \mathbb{E}[1 - 2 \sin^2 \theta_j + i 2 \cos \theta_j \sin \theta_j]$ $= a_j^2 \mathbb{E}[\cos(2\theta_j) + i \sin(2\theta_j)]$ = 0(9)

In the last step we use the fact that sine and cosine integrate to zero over two cycles. A similar argument can be made for the case j, k < 0Let j = -k. Now $A(\omega_i)$ and $A(\omega_k)$ are complex conjugates.

$$\mathbb{E}[A(\omega_j)A(\omega_{-j})] = a_j^2 \mathbb{E}[\cos^2\theta_j + \sin^2\theta_j] = a_j^2$$

The upshot

Result: The autocovariances of the process X_t generated by the linear cyclical model are given by

$$\gamma_{h} = \mathbb{E}[X_{t}X_{t-h}]$$

$$= \sum_{j=-m}^{m} \sum_{k=-m}^{m} \mathbb{E}[A(\omega_{j})A(\omega_{k})]e^{i\omega_{j}t}e^{i\omega_{k}(t-h)}$$

$$= \sum_{j=-m}^{m} \mathbb{E}[A(\omega_{j})\overline{A(\omega_{j})}]e^{i\omega_{j}h} = \sum_{j=-m}^{m} a_{j}^{2}e^{i\omega_{j}h} \qquad (10)$$

Since X_t is a real valued process the autocovariances can also be written as

$$\gamma_h = 2 \sum_{j=1}^m a_j^2 \cos(\omega_j h) \quad \Box$$

The Spectral Distribution

The spectral distribution function for the process X_t , defined on the interval $\omega \in (-\pi, \pi)$, is

$$S(\omega) = \sum_{j=-m}^{m} \mathbb{E}[A(\omega_j)\overline{A(\omega_j)}] \{\omega_j \leq \omega\}$$

where $\{\omega_j \leq \omega\}$ denotes the indicator function that is one if $\omega_j \leq \omega$. \Box

Remarks

The spectral distribution is non-negative and continuous from the right.

If the spectral distribution function is evaluated at $\omega=\pi$ we obtain

$$S(\pi) = \sum_{j=-m}^{m} \mathbb{E}[A(\omega_j)\overline{A(\omega_j)}] = \sum_{j=-m}^{m} a_j^2 = \mathbb{E}[X_t^2]$$
(11)

The spectral distribution function is symmetric in the sense that for $\omega>0$

$$S(-\omega) = S(\pi) - \lim_{n \to \infty} S((\omega - 1/n))$$
(12)

Autocovariances, again

The representation of the autocovariances can be expressed as a Riemann-Stieltjes integral. Define a sequence of grids

$$[\omega]^{(n)} = \{\omega_k^{(n)} = 2\pi k/n - \pi\}$$

and $\Delta_n \omega = \omega_{k+1}^{(n)} - \omega_k^{(n)} = 2\pi/n$. Moreover, let

$$\Delta_n S(\omega) = S(\omega) - S(\omega - \Delta_n \omega)$$

Roughly,

$$\sum_{k=0}^{n} e^{i\omega_k^{(n)}h} \Delta_n S(\omega_k^{(n)}) \longrightarrow \sum_{j=-m}^{m} a_j^2 e^{i\omega_j h}$$

as $n \to \infty$.

The Upshot

Thus, we can express the autocovariance γ_{h} as the following integral

$$\gamma_h = \int_{(-\pi,\pi]} e^{i\omega h} dS(\omega)$$

By using a similar argument, we can also obtain a integral representation for the stochastic process X_t . Define the stochastic process

$$Z(\omega) = \sum_{j=-m}^{m} A(\omega_j) \{ \omega_j \le \omega \}$$

with orthogonal increments $\Delta_n Z(\omega) = Z(\omega) - Z(\omega - \Delta_n \omega)$. Note that the increments are now random variables.

Very roughly,

$$\sum_{k=0}^{n} e^{i\omega_{k}^{(n)}t} \Delta_{n} Z(\omega_{k}^{(n)}) \longrightarrow \sum_{j=-m}^{m} A(\omega_{j}) e^{i\omega_{j}t}$$

almost surely as $n \to \infty$. Thus, we can express the stochastic process X_t , generated from the linear cyclical model, as the stochastic integral

$$X_t = \int_{(-\pi,\pi]} e^{i\omega t} dZ(\omega)$$

Spectral Representation for Stationary Processes

Every zero-mean stationary process has a representation of the form

$$X_t = \int_{(-\pi,\pi]} e^{i\omega h} dZ(\omega)$$

where $Z(\omega)$ is a orthogonal increment process. Correspondingly, its autocovariance function γ_h can be expressed as

$$\gamma_h = \int_{(-\pi,\pi]} e^{i\omega h} dS(\omega)$$

where $S(\omega)$ is a non-decreasing right continuous function with $S(\pi) = \mathbb{E}[X_t^2] = \gamma_0.$

Spectral Density Function

Suppose the spectral distribution function is differentiable with respect to ω on the interval $(-\pi, \pi]$. The spectral density function is defined as

$$s(\omega)=dS(\omega)/d\omega$$

If a process has a spectral density function $s(\omega)$ then the covariances can be expressed as

$$\gamma_h = \int_{(-\pi,\pi]} e^{ih\omega} s(\omega) d\omega$$

The spectral density uniquely determines the entire sequence of autocovariances. Moreover, the converse is also true.

Consider the sum

$$s_n(\omega)^* = \frac{1}{2\pi} \sum_{h=-n}^n \gamma_h e^{-i\omega h}$$
$$= \frac{1}{2\pi} \sum_{h=-n}^n \left[\int_{(-\pi,\pi]} e^{i\tau h} s(\tau) d\tau \right] e^{-i\omega h} \qquad (13)$$

The sum $s_n^*(\omega)$ is a Fourier series. If the spectral density $s(\omega)$ is piecewise smooth then

$$s_n^*(\omega) \longrightarrow s(\omega)$$

Thus, the spectral density can be obtained by evaluating the autocovariance generating function of X_t at $z = e^{-i\omega}$.

$$s(\omega) = \frac{1}{2\pi}\gamma(e^{-i\omega}) = \frac{1}{2\pi}\sum_{h=-\infty}^{\infty}\gamma_h e^{-i\omega h}$$

where

$$\gamma(z) = \sum_{j=-\infty}^{\infty} \gamma_j z^j$$

Filter

Suppose $s_X(\omega)$ is the spectral density function of a process X_t . Filters are used to dampen or amplify the spectral density at certain frequencies. The spectrum of the filtered series Y_t is given by

$$s_Y(\omega) = f(\omega)s_X(\omega).$$

where $f(\omega)$ is the filter function. Frequency domain trend/cycle analogue $X_t = \text{low frequency component} + \text{high frequency component}$ Example: For Schumpeter, Kitchin cycle was shortest with $\overline{\omega} = 0.47$. To remove the effects of other cycles from data, we could use the filter

$$f(\omega) = \left\{egin{array}{cc} 0 & ext{if } \omega < 0.4 \ 1 & ext{otherwise} \end{array}
ight.$$

A popular filter in the real business cycle literature in macro-economics is the so-called Hodrick Prescott filter.

$$f^{HP}(\omega) = \left[rac{16\sin^4(\omega/2)}{1/1600 + 16\sin^4(\omega/2)}
ight]^2$$

.

This filter basically kills long cycles and attenuates medium term ones.

(See Soderlind, 1994.)

HP Filter

f(2pi/64) = 0.016697846612617945 f(2pi/32) = 0.49370145155

More on Filters

Subsquently we will consider filters that are linear in the time domain, namely, filters of the form,

$$Y_t = \sum_{h=1}^J c_h X_{t-h} = C(L) X_t$$

where C(z) is the polynomial function $\sum_{h=1}^{J} c_h z^h$. Recall that

$$X_t = \sum_{j=-m}^m A(\omega_j) e^{i\omega_j t}$$

This means that

Hence,

$$X_{t-h} = \sum_{j=-m}^{m} A(\omega_j) e^{i\omega_j t} e^{-i\omega_j h}$$

$$Y_{t} = C(L)X_{t} = \sum_{h=1}^{J} c_{h}X_{t-h}$$

$$= \sum_{j=-m}^{m} \left[A(\omega_{j})e^{i\omega_{j}t} \sum_{h=1}^{J} c_{h}e^{-i\omega_{j}h} \right]$$

$$= \sum_{j=-m}^{m} A(\omega_{j})C(e^{-i\omega_{j}})e^{i\omega_{j}t}$$

$$= \sum_{j=-m}^{m} \tilde{A}(\omega_{j})e^{i\omega_{j}t} \qquad (14)$$

Autocovariance

The autocovariances of Y_t can therefore be expressed as

$$\mathbb{E}[Y_t Y_{t-h}] = \sum_{j=-m}^m a_j^2 C(e^{-i\omega_j}) C(e^{i\omega_j}) e^{i\omega_j h}$$

Thus, we can define the spectral distribution function of Y_t as

$$S_{Y}(\omega) = \sum_{j=-m}^{m} a_{j}^{2} C(e^{-i\omega_{j}}) C(e^{i\omega_{j}})$$

with increments

$$\Delta S_Y(\omega_j) = \Delta S_X C(e^{-i\omega_j}) C(e^{i\omega_j})$$

Generalization

Result: Suppose that X_t has a spectral density function $s_X(\omega)$ and $Y_t = C(L)X_t$, then the spectral density of the filtered process Y_t is given by

$$s_Y(\omega) = |C(e^{-i\omega})|^2 s_X(\omega)$$

The function $C(e^{-i\omega})$ is called transfer function of the filter, and the filter function $f(\omega) = |C(e^{-i\omega})|^2$ is often called power transfer function. \Box

Examples of Spectrum

White Noise

$$s(\omega) = rac{1}{2\pi} \sum_{h=-\infty}^{\infty} \gamma_h e^{-i\omega h} = rac{\gamma_0}{2\pi}$$

An AR(1): $Y_t = \phi Y_{t-1} + X_t$ Interpret as a linear filter with $MA(\infty)$ rep: $Y_t = \sum_{h=0}^{\infty} \phi^h X_{t-h}$. Thus:

$$\begin{aligned} |C(e^{-i\omega})|^2 &= |[1 - \phi e^{-i\omega}]^{-1}|^2 \\ &= [|1 - \phi \cos \omega + i\phi \sin \omega|^2]^{-1} \\ &= [(1 - \phi \cos \omega)^2 + \phi^2 \sin^2 \omega]^{-1} \\ &= [1 - 2\phi \cos \omega + \phi^2 (\cos \omega^2 + \sin^2 \omega)]^{-1}.$$
(15)

which means $s_Y(\omega) = \frac{\sigma^2/2\pi}{1+\phi^2-2\phi\cos\omega}$. Note $s_Y(0) \longrightarrow \infty$ as $\phi \longrightarrow 1$

More Examples

Stationary ARMA process*: $\phi(L)Y_t = \theta(L)X_t$ with $X_t \sim WN$. The spectral density is given by

$$s_{Y}(\omega) = \left|rac{ heta(e^{-i\omega})}{\phi(e^{-i\omega})}
ight|^{2}\sigma^{2}$$

Sums of processes. Suppose that $W_t = Y_t + X_t$. The spectrum of the process W_t is simply the sum

$$s_W(\omega) = s_Y(\omega) + s_X(\omega)$$

Visual

<matplotlib.legend.Legend at 0x7faa7a47b490>

Estimation

- 1. Parametric Pick an ARMA process, estimate in time domain, use filtering results to get spectrum.
- 2. Nonparametric Estimate autocovariances $\{\hat{\gamma}_h\}$, directly write down spectral density. Let's look at this.

Let $\bar{y} = \frac{1}{T} \sum y_t$ and define the sample covariances

$$\hat{\gamma}_h = rac{1}{T}\sum_{t=h+1}^T (y_t - ar{y})(y_{t-h} - ar{y})$$

An intuitively plausible estimate of the spectrum is the sample periodogram

$$I_{T}(\omega) = \frac{1}{2\pi} \sum_{j=-T+1}^{T-1} \hat{\gamma}_{h} e^{-i\omega h}$$
$$= \frac{1}{2\pi} \left(\hat{\gamma}_{0} + 2 \sum_{h=1}^{T-1} \hat{\gamma}_{h} \cos(\omega h) \right)$$
(16)

Result: The sample periodogram is an asymptotically unbiased estimator of the population spectrum, that is,

$$\mathbb{E}[I_{\mathcal{T}}(\omega)] \xrightarrow{\rho} s(\omega) \tag{17}$$

However, it is inconsistent since the variance $var[I_T(\omega)]$ does not converge to zero as the sample size tends to infinity. \Box

Smoothed Periodogram

Smoothing: get non-parametric estimators.

To obtain a spectral density estimate at the frequency $\omega = \omega_*$ we will compute the sample periodogram $I_T(\omega)$ for some ω_j 's in the neighborhood of ω_* and simply average them. Define the following band around ω_* :

$$B(\omega_*|\lambda) = \left\{ \omega : \omega_* - \frac{\lambda}{2} < \omega \le \omega_* + \frac{\lambda}{2} \right\}$$
(18)

The bandwidth is λ , where λ is a parameter. Moreover, define the "fundamental frequencies" (see Hamilton 1994, Chapter 6.2, for a discussion why these frequencies are "fundamental")

$$\omega_j = j \frac{2\pi}{T} \quad j = 1, \dots, (T-1)/2$$
 (19)

iThe number of fundamental frequencies in the band $B(\omega_*)$ is

$$m = \lfloor \lambda T (2\pi)^{-1} \rfloor \tag{20}$$

Smoothed Periodogram

The smoothed periodogram estimator of $s(\omega_*)$ is defined as the average

$$\hat{s}(\omega) = \sum_{j=1}^{(T-1)/2} \frac{1}{m} \{ \omega_j \in B(\omega_*|\lambda) \} I_T(\omega_j)$$
(21)

where $\{\omega_j \in B(\omega_*|\lambda)\}$ is the indicator function that is equal to one if $\omega_j \in B(\omega_*|\lambda)$ and zero otherwise.

Result: The smoothed periodogram estimator $\hat{s}(\omega_*)$ of $s(\omega_*)$ is consistent, provided that the bandwidth shrinks to zero, that is, $\lambda \to 0$ as $T \to \infty$ and the number of ω_j 's in the band $B(\omega_*|\lambda)$ tends to infinity, that is $m = \lambda T/(2\pi) \to \infty$. \Box

Remarks

- get smoothed estimates => need to get λ. Ultimately subective.
- Most non-parameterics approaches are based on "Kernel estimates"

The expression $\{\omega_j \in B(\omega_*)\}$ can be rewritten as follows

$$\{\omega_{j} \in B(\omega_{*})\} = \left\{\omega_{*} - \frac{\lambda}{2} < \omega_{j} \le \omega_{*} + \frac{\lambda}{2}\right\}$$
$$= \left\{-\frac{1}{2} < \frac{\omega_{j} - \omega_{*}}{\lambda} \le \frac{1}{2}\right\}$$
(22)

Define

$$\mathcal{K}\left(\frac{\omega_j - \omega_*}{\lambda}\right) = \left\{-\frac{1}{2} < \frac{\omega_j - \omega_*}{\lambda} \le \frac{1}{2}\right\}$$
(23)

It can be easily verified that

٠

$$\int K\left(\frac{\omega_j - \omega_*}{\lambda}\right) d\omega_* = 1$$
(24)

The function $K\left(\frac{\omega_j-\omega_*}{\lambda}\right)$ is an example of a Kernel function. In general, a Kernel has the property $\int K(x)dx = 1$. Since $m \approx \lambda(T-1)/2$, the spectral estimator can be rewritten as

$$\hat{s}(\omega) = \frac{\pi}{\lambda(T-1)/2} \sum_{j=1}^{(T-1)/2} K\left(\frac{\omega_j - \omega_*}{\lambda}\right) I_T(\omega_j)$$
(25)

Application: IP

<matplotlib.legend.Legend at 0x7faa9dd87100>

Application: Autocorrelation Consistent Standard Errors

Consider the model

$$y_t = \beta x_t + u_t, \quad u_t = \psi(L)\epsilon_t, \quad \epsilon_t \sim iid(0, \sigma^2)$$
 (26)

The OLS estimator is given by

$$\hat{\beta} - \beta = \frac{\sum x_t u_t}{\sum x_t^2}$$
(27)

The conventional standard error estimates for $\hat{\beta}$ are inconsistent if the u_t 's are serially correlated. However, we can construct a consistent estimate based on non-parametric spectral density estimation. Define $z_t = x_t u_t$. We want to obtain an estimate of

$$plim \Lambda_{T} = plim \frac{1}{T} \sum_{t=1}^{T} \sum_{h=1}^{T} E[z_{t}z_{h}]$$
(28)

It can be verified that

$$\sum_{h=-\infty}^{\infty} \gamma_{zz,h} - \frac{1}{T} \sum_{t=1}^{T} \sum_{h=1}^{T} E[z_t z_h] \xrightarrow{p} 0$$
(29)

Since

$$s(\omega) = \frac{1}{2\pi} \sum_{h=-\infty}^{\infty} \gamma_{zz,h} e^{-i\omega h}$$
(30)

it follows that a consistent estimator of plim Λ_T is

$$\hat{\Lambda}_T = 2\pi \hat{s}(0) \tag{31}$$

where $\hat{s}(0)$ is a non-parametric spectral estimate at frequency zero.

Application: Beaudry, Galizia, and Portier (2020)

Paul Beaudry, Dana Galiza, and Franck Portier (2016): "Putting the Cycle Back into Business Cycle Analysis," *NBER Working Paper*.

- Re-examines the spectral properties of several cyclically sensitive variables such as hours worked, unemployment and capacity utilization.
- Document the presence of an important peak in the spectral density at a periodicity of approximately 36-40 quarters.
- This is cyclical phenomena at the "long end" of the business cycle.
- Suggests a model ("limit cycles") to account for this finding.

The Paper in 1 Picture

Figure 1: Properties of Hours Worked per Capita

References

BEAUDRY, P., D. GALIZIA, AND F. PORTIER. (2020): "Putting the Cycle Back into Business Cycle Analysis," American Economic Review, 110, 1–47.
BROCKWELL, P. J., AND R. A. DAVIS. (1987): "Time Series: Theory and Methods," Springer Series in Statistics, .
HAMILTON, J. (1994): Time Series Analysis, Princeton, New

Jersey: Princeton University Press.