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Background

» Overview: Chapters 6 from Hamilton (1994).
» Technical Details: Chapter 4 from Brockwell and Davis (1987).

» Other stuff. You might want to look at a digital signals
processing textbook, for example: here.


http://www.sp4comm.org/docs/sp4comm_corrected.pdf

Cycles as Frequencies

Starting In the 19th Century, economists and others recognized
cyclical patterns in economic activity.
Schmupeter distinguished between cycles at different frequencies
» Kondratieff Cycles — Longwave cycles lasting 50 years (caused
by fundamental innovations.)
» Juglar Cycles — medium cycle (8 years) associated with
changes in credit condition.
» Kitchin Cycles — short run cycles (40 months) associated with
information diffusion.

=> model economic activity as a linear combination of periodic
function with different frequencies.



A model of frequencies

Consider the following model for quarterly observations

Xe =2 Z ajcos(wjt + 6;)
j=1

where §; is ~ iidU[—7, 7] and —7 < w; < wj41 < 7. The random
variables 6 are determined in the infinite past and simply cause a
phase shift. According to Schumpeter’s hypothesis m should be
equal to three. The frequencies w; can be determined as follows.

Cycle Duration Frequency

Kondratieff 200 quarters  w; = (27)/200 = 0.03
Juglar 32 quarters  wp = (27)/32=10.20
Kitchin 13.3 quarters w3 = (27)/13.3 = 0.47



A Time Series of this process

a=[521], w=][0.03,0.20,047].
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The Spectrum

» The coefficients a; to a3 are the amplitudes of the different
cycles

» If a; and a are small then most of the variation in X; is due
to the Kitchin cycles.

» The plot of af versus w is called the spectrum of X;.



Some math

cos(x +y) = cosxcosy —sinxsiny (1)
1

sinxsiny = E[cos(x —y) — cos(x + y)] (2)
1

cosxcosy = E[cos(x —y) +cos(x + y)] (3)

2sin?x = 1 — cos(2x) (4)
1

sinxcosx = 5 sin(2x) (5)

Moreover, sin® x + cos? x = 1.

We consider real-valued stochastic processes X;, complex numbers
will help us summarize sine and cosine expressions using
exponential functions.



More Math

Let i = /—1.
Euler's formula: .
e'Y =cosp+isinp

The formula becomes less mysterious if you rewrite e'?, sin ¢, and
COS Y as power series.



The Plan

» Rewrite Schumpeter Model
» Define spectral distribution / density function

» Examine relationship between autocovariances {7,}7° ___ and
the spectrum.

» Discuss very general spectral representation for a stationary
stochastic process X;.



Schumpeter Model

m
X = 22 aj cos 0 cos(w;jt) — aj sin 8 sin(w;jt)
j=1
where aj cos§; and ajsin 6 can be regarded as random coefficients.
Eulers formula implies

m

Xt = Z A((.Uj)eiwjt

j=—m

where w_; = —w;. Let a_; = a; and



This means that

y_ | aj(cost +ising) ifj>0
Alwj) = { aj(cos )y —isinf);) ifj <0

We can verify that:

A(wj)e™it + A(w_j)e™ ™It = 2[a; cos 0; cos(wjt) — aj sin 0 sin(w;t)]



Moments of Linear Cyclical Models

1 ™
E[cosf;] = o= cost;df; =0
. 1 [m .
E[sin0;] = - sinf;df; =0

(6)
(7)

Result: The expectation of X; in the linear cyclical model is equal

to zero. [



Autocovariances

To obtain the autocovariances v, = E[X: X;_p] we have to
calculate the moments E[A(w;)A(wk)].
Let j # k, j # —k. Suppose that j, k > 0.

E[A(wj)A(wk)] = ajakE[(cos b + isinb;)(cos by + isinby)]
= ajakE[cos 0 cos O + i cos §; sin i cos by sin O; — sin
=0

Since 0 and 6 are independent. Similar arguments can be made if
j and k have different signs.



Covariance

Let j = k. Suppose that j, kK > 0.

E[A(wj)A(wk)] = a7E[(cos0; + isin6;)’]
a?E[(cos® 0; — sin® 0 + i2 cos 0; sin 0]
= afIE[l — 2sin?; + i2 cos 0 sin 0}]
= afIE[cos(ZHJ-) + isin(26;)]
0 (9)
In the last step we use the fact that sine and cosine integrate to
zero over two cycles. A similar argument can be made for the case

j, k<0
Let j = —k. Now A(wj) and A(wy) are complex conjugates.

E[A(wj)A(w-j)] = afIE[cos2 0; +sin0;] = aj2



The upshot

Result: The autocovariances of the process X; generated by the
linear cyclical model are given by

o = E[XeXe_p)
Z Z E[A(wj)A(Wk)]eiwjteiwk(t*h)

j—fmk——m

Z E[A(wj)A(w;)]e™if = Z a2e""1h (10)

j=—m j=—m

Since X; is a real valued process the autocovariances can also be
written as

Yh =2 Z aJ2 cos(wjh) O
j=1



The Spectral Distribution

The spectral distribution function for the process X;, defined on the
interval w € (—m, ), is

Z E[A(wj)Alwj){w; < w}
Jj=—m

where {w; < w} denotes the indicator function that is one if
wj S w. d



Remarks

The spectral distribution is non-negative and continuous from the
right.
If the spectral distribution function is evaluated at w = 7 we obtain

m

S(m)= Y E[A@)AW)] = Z aj = E[X/] (11)

j==m j==m

The spectral distribution function is symmetric in the sense that for
w>0

S(—w) = S(m) — lim S((w—1/n)) (12)

n—oo



Autocovariances, again

The representation of the autocovariances can be expressed as a
Riemann-Stieltjes integral. Define a sequence of grids

[w](M) = {w,(:) =2nk/n—m}

and A w = w/(<,21 — w,((") = 2m/n. Moreover, let

ApS(w) = S(w) — S(w— Apw)

Roughly,

Zelwk hA 5 Z aZele

j=—m

as n — oQ.



The Upshot

Thus, we can express the autocovariance 7, as the following
integral

Yh :/ e“hdS(w)
(771"7‘—]

By using a similar argument, we can also obtain a integral
representation for the stochastic process X;. Define the stochastic
process
m
Z(w) = > Aw){w <w}
j=—m
with orthogonal increments A,Z(w) = Z(w) — Z(w — Apw). Note
that the increments are now random variables.



Very roughly,

almost surely as n — oo. Thus, we can express the stochastic
process X;, generated from the linear cyclical model, as the
stochastic integral

Xi = / e“tdZ(w)
(—7T,7T]



Spectral Representation for Stationary Processes

Every zero-mean stationary process has a representation of the form
Xi = / e“hdz(w)
(—7‘(,71’]

where Z(w) is a orthogonal increment process. Correspondingly, its
autocovariance function 7, can be expressed as

Vh :/ endS(w)
(771-771-]

where S(w) is a non-decreasing right continuous function with
S(m) = E[X?] = 0.



Spectral Density Function

Suppose the spectral distribution function is differentiable with
respect to w on the interval (—m, 7w]. The spectral density function
is defined as

s(w) = dS(w)/dw

If a process has a spectral density function s(w) then the
covariances can be expressed as

= / eih“’s(w)dw
(771-777]

The spectral density uniquely determines the entire sequence of
autocovariances. Moreover, the converse is also true.



Consider the sum

* 1 . — i
s(w)” = o > e h
h=—n
n

_ i eiThST T e—iwh
= o> }: !A;mﬂ (1)d ] (13)

The sum s%(w) is a Fourier series. If the spectral density s(w) is
piecewise smooth then

sh(w) — s(w)

Thus, the spectral density can be obtained by evaluating the
autocovariance generating function of X; at z = e™'%.

1 _ _
S(W):g lw)_i Z he iwh

where

> .
= Z ;2

j==00



Filter

Suppose sx(w) is the spectral density function of a process X;.
Filters are used to dampen or amplify the spectral density at certain
frequencies. The spectrum of the filtered series Y; is given by

sy(w) = f(w)sx(w).

where f(w) is the filter function.

Frequency domain trend/cycle analogue

X: = low frequency component + high frequency component
Example: For Schumpeter, Kitchin cycle was shortest with

w = 0.47. To remove the effects of other cycles from data, we
could use the filter

0 fw<04
Flw) = { 1 otherwise



Hodrick Prescott filter

A popular filter in the real business cycle literature in
macro-economics is the so-called Hodrick Prescott filter.

FHP () — 16 sin(w /2) 2

~ [1/1600 + 16 sin*(w/2)
This filter basically kills long cycles and attenuates medium term

ones.

(See Soderlind, 1994.)




HP Filter

f(2pi/64) = 0.016697846612617945 f(2pi/32) = 0.4937014515
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More on Filters

Subsquently we will consider filters that are linear in the time
domain, namely, filters of the form,

J
Yi= Z chXe—n = C(L)X:
h=1

where C(z) is the polynomial function Zh 1 chz". Recall that

Z A le

J_fm



This means that

Hence,

m
Xt—h: Z A(Wj)eiwjte_iwjh

j=—m

(14)



Autocovariance

The autocovariances of Y; can therefore be expressed as

E[Y:Yi—n] = Z afC(e*iwj)C(eiwj)eiwjh
Jj=—m
Thus, we can define the spectral distribution function of Y; as

m

)= 3° scte M)C(e)

Jj=—m
with increments

ASY(W_,') = ASX C(e_iwj) C(eiwi)



Generalization

Result: Suppose that X; has a spectral density function sx(w) and
Y: = C(L)X:, then the spectral density of the filtered process Y; is

given by

sy(w) = [C(e™)*sx(w)

The function C(e~/) is called transfer function of the filter, and
the filter function f(w) = |C(e~™)|? is often called power transfer
function. O



Examples of Spectrum

White Noise

27T Z Ape f/wh g

h=—occ

An AR(l) Yt = ¢Yt—1 + Xt

Interpret as a linear filter with MA(oco

Thus:

Cle™)? =

which means sy (w) =

) rep: Y = Zzio d’hXt—h-

11— ge ][

[[1 — ¢cosw + idsin wﬂ_l

[(1 - ¢cosw)® + ¢*sin’ w]_l

[1—2¢cosw + ¢*(cosw? + sin? w)] - (15)

a?/2m

1+¢2—2¢pcosw "

Note sy(0) — ccas ¢ — 1



More Examples

Stationary ARMA process*: ¢(L)Y: = 6(L)X; with X; ~ WN. The
spectral density is given by

iy 12
t(e 2

= '¢(e—;:;

Sums of processes. Suppose that W; = Y; + X;. The spectrum of
the process W; is simply the sum

Sw(w) = Sy(w) + Sx(w)



Visual

<matplotlib.legend.Legend at Ox7faa7a47b490>
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Estimation

1. Parametric — Pick an ARMA process, estimate in time domain,
use filtering results to get spectrum.

2. Nonparametric — Estimate autocovariances {9}, directly write
down spectral density. Let's look at this.



Let y = % >yt and define the sample covariances

T

== (e = 7)Yeen — )

t=h+1

An intuitively plausible estimate of the spectrum is the sample
periodogram

I (w)

T-1
1 .
A —iwh
o Z ne "
= T+41

1 T-1
- 2 (T metn) 09

h=1

Result: The sample periodogram is an asymptotically unbiased
estimator of the population spectrum, that is,

E[f7(w)] = s(w) (17)

However, it is inconsistent since the variance var[l1(w)] does not
converge to zero as the sample size tends to infinity. [J



Smoothed Periodogram

Smoothing: get non-parametric estimators.

To obtain a spectral density estimate at the frequency w = w, we
will compute the sample periodogram I(w) for some wj's in the
neighborhood of w, and simply average them. Define the following
band around wy:

B(w*|>\):{w:w*;<w§w*+;} (18)

The bandwidth is A, where X is a parameter. Moreover, define the
“fundamental frequencies’ (see Hamilton 1994, Chapter 6.2, for a
discussion why these frequencies are “fundamental”)

2
wj:JT j=1...,(T-1)/2 (19)

iThe number of fundamental frequencies in the band B(w,) is

m=|[AT(2r)7}| (20)



Smoothed Periodogram

The smoothed periodogram estimator of s(w.) is defined as the

average
(T-1)/2

. 1
)= 3 - {w € Blwa A} ir(w)) (21)
j=1
where {w; € B(w«|A)} is the indicator function that is equal to one
if w; € B(w«|\) and zero otherwise.

Result: The smoothed periodogram estimator §(w.) of s(wx) is
consistent, provided that the bandwidth shrinks to zero, that is,
A — 0as T — oo and the number of w;'s in the band B(w.|\)
tends to infinity, that is $ m = X\ T/(27) — o0$. O



Remarks

P get smoothed estimates => need to get A. Ultimately
subective.

» Most non-parameterics approaches are based on “Kernel
estimates”

The expression {w; € B(wx)} can be rewritten as follows

A A
{wj e B(wy)} = {w*—Q <wj§w*+2}

1 Wj — W 1
— P < —
{ 2 < A 2} (22)

Define



It can be easily verified that

[ (“’f S “*) deo, = 1 (24)

The function K (%) is an example of a Kernel function. In

general, a Kernel has the property [ K(x)dx = 1. Since
m ~ X\(T — 1)/2, the spectral estimator can be rewritten as

(T-1)/2

§(w) = ﬁ JZ; K (Wj ;w) I7(w;) (25)




Application: IP
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<matplotlib.legend.Legend at 0x7faa9dd87100>
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Application: Autocorrelation Consistent Standard Errors

Consider the model
Ve = Bxe + ur, U = w(L)ﬁtv €t ~ iid(07<72) (26)

The OLS estimator is given by

fo = e (27)
DXt
The conventional standard error estimates for 3 are inconsistent if
the u;'s are serially correlated. However, we can construct a
consistent estimate based on non-parametric spectral density
estimation. Define z; = x;u;. We want to obtain an estimate of

T T
. .1
plim A+ = plim - ; hzjl E[z¢zp) (28)



It can be verified that

T T
1
Z Vezh = = ) > Elzezs] = 0
h=—c0 t 1 h=1
Since
1 o0
s(w) = > Z Yezpe "l
h=—o0

it follows that a consistent estimator of plim At is

At = 275(0)

(29)

(30)

(31)

where §(0) is a non-parametric spectral estimate at frequency zero.



Application: Beaudry, Galizia, and Portier (2020)

Paul Beaudry, Dana Galiza, and Franck Portier (2016): “Putting the
Cycle Back into Business Cycle Analysis,” NBER Working Paper.

P> Re-examines the spectral properties of several cyclically
sensitive variables such as hours worked, unemployment and
capacity utilization.

» Document the presence of an important peak in the spectral
density at a periodicity of approximately 36-40 quarters.

» This is cyclical phenomena at the “long end” of the business
cycle.

» Suggests a model (“limit cycles”) to account for this finding.



The Paper in 1 Picture

Figure 1: Properties of Hours Worked per Capita
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