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Background

▶ Overview: Chapters 15-16 from Hamilton (1994).

▶ Technical Details: Davidson and MacKinnon (2003)



Trends vs Cycles

A commond decomposition of macroeconomic time series is into
trend and cycle.

If Y T corresponds to real per capita GDP gdpt of the United
States. According to this components approach to time series, yt is
expressed as

yt = ln gdpt = trendt + fluctuationst

we will examine regression techniques that decompose yt in a trend
and a cyclical component.



An identification problem

what features of the time series do we regard as trend and what do
we regard as fluctuations around the trend?

Let’s guess a linear deterministic time trend:

yt = β1 + β2t + ut

A decomposition of yt into trend and fluctuations can be obtained
by estimating β1 and β2:

yt = t̂rend t + ̂fluctuationst

= (β̂1 + β̂2t) + (yt − β̂1 − β̂2t). (1)

When yt is logged, the coefficient β2 has the interpretation of an
average growth rate.



A Trend Cycle Decomposition of Log US GNP



Deterministic Trend Model

Consider the deterministic trend model

yt = β1 + β2t + ut

with E[ut ] = 0 and var [ut ] = σ2. There are several difficulties
associated with the large sample analysis of the OLS estimators
β̂1,T and β̂2,T . Taking xt = [1, t]′,

1. The matrix 1
T

∑
xtx

′
t does not converge to a non-singular

matrix Q.
2. In a time series model, the disturbances ut are in general

dependent. This will change the limiting distribution of
quantities such as

√
T 1

T

∑
xtut .

3. If the ut ’s are serially correlated, then the OLS estimator will
in general be inefficient.



Rates of Convergence for OLS Estimator

Roughly speaking, convergence rates tell us how fast we can learn
the “true” value of a parameter in a sampling experiment.

If “standard” OLS then the variance of the β̂ converges to zero at
rate 1/T .

This isn’t true for models with deterministic trends.

Let’s look at the distributions of
√
T (β̂1 − β1) and

√
T (β̂2 − β2)



A Monte Carlo



Some math
Facts:

T∑
t=1

1 = T ,

T∑
t=1

t = T (T + 1)/2,
T∑
t=1

t2 = T (T + 1)(2T + 1)/6.

(Assume u′ts are independently distributed.)

1
T

∑
xtx

′
t =

1
T

( ∑
1

∑
t∑

t
∑

t2

)
are not convergent!
On the other hand

1
T 3

∑
xtx

′
t −→

(
0 0
0 1/3

)
which is singular and not invertible!

Message: Trends change the rate of convergence of estimators!



More on Rates of Convergence

It turns out that β̂1,T and β̂2,T have different asymptotic rates of
convergence. In particular, we will learn faster about the slope of
the trend line than the intercept.

To analyze the asymptotic behavior of the estimators we define the
matrix

GT =

(
1 0
0 T

)
.

Note that the matrix is equivalent to its transpose, that is,
GT = G ′

T .



Asymptotic Distributions

We will analyze the following quantity

GT (β̂T − β) =

(
1
T

∑
G−1
T xtx

′
tG

−1
T

)−1 ( 1
T

∑
G−1
T xtut

)
.

It can be easily verified that

1
T

∑
G−1
T xtx

′
tG

−1
T =

1
T

( ∑
1

∑
t/T∑

t/T
∑

(t/T )2

)
−→ Q,

where

Q =

(
1 1/2

1/2 1/3

)
.



Standardization

The term 1
T

∑
G−1
T xtut has the components 1

T

∑
ut and

1
T

∑
(t/T )ut which converge in probability to zero based on the

weak law of large numbers for non-identically distributed random
variables.

Note: Without the proper standardization 1
T

∑
tut will not

converge to its expected value of zero. The variance of the random
variable TuT is getting larger and larger with sample size which
prohibits the convergence of the sample mean to its expectation. □



Results

Result: Suppose

yt = β1 + β2t + ut , ut ∼ iid(0, σ2).

Let β̂i ,T , i = 1, 2 be the OLS estimators of the intercept and slope
coefficient, respectively. Then

β̂1,T − β1
p−→ 0 (2)

T (β̂2,T − β2)
p−→ 0. □ (3)



CLT

I’m not going to show the details of proof for CLT, but
▶ We use a CLT for independently but not identically distributed

random variables (Liapounov)
▶ Also, Cramer and Wold device that can be used to deduce the

convergence of a random vector
based on the convergence of arbitrary linear combinations of its
elements.
Result

yt = β1 + β2t + ut , ut ∼ iid(0, σ2).

Let β̂i ,T , i = 1, 2 be the OLS estimators of the intercept and slope
coefficient, respectively. The sampling distribution of the OLS
estimators has the following large sample behavior

√
TGT (β̂T − β) =⇒ N (0, σ2Q−1)



Note

This is equivalent to[ √
T (β̂1,T − β)

T 3/2(β̂2,T − β2)

]
=⇒ N

([
0
0

]
, σ2

[
4 −6
−6 12

])
. □



Having Said All this

When we consider the case where the variance is unknown:

σ̂2 =
1

T − 2

∑
(yt − β̂1 − β̂2t)

2

Despite the fact that β1 and β2 have different asymptic rates of
convergence, the t statistics still have N(0, 1) limited distribution
because the standard error estimates have offsetting behaviour.



OLS and Serial Dependence

yt = βt + ut

ut are serially correlated, that is, E[utut−h] ̸= 0 for some h =⇒
OLS not efficient.
Let’s look at example with MA(1) errors.

ut = ϵt + θϵt−1, ϵt ∼ iid(0, σ2
ϵ ).

can verify

E[u2
t ] = E[(ϵt + θϵt−1)

2] = (1 + θ2)σ2
ϵ (4)

E[utut−1] = E[(ϵt + θϵt−1)(ϵt−1 + θϵt−2)] = θσ2
ϵ (5)

E[utut−h] = 0 h > 1. (6)



The OLS estimator

β̂T − β =

∑
tut∑
t2

.

To find the limiting distribution, note that

1
T 3

T∑
t=1

t2 =
T (T + 1)(2T + 1)

6T
−→ 1

3
.



Numerator

The numerator can be manipulated as follows∑
tut =

∑
t(ϵt + θϵt−1)

=
0 +ϵ1 +2ϵ2 +3ϵ3 + . . .

+θϵ0 +2θϵ1 +3θϵ2 +4θϵ3 + . . .

=
T−1∑
t=1

(t + θ(t + 1))ϵt + θϵ0 + T ϵT

=
T−1∑
t=1

(1 + θ)tϵt +
T−1∑
t=1

θϵt + θϵ0 + T ϵT

=
T∑
t=1

(1 + θ)tϵt −θT ϵT + θ

T∑
t=1

ϵt−1︸ ︷︷ ︸
asymp. negligible

. (7)



OLS, Continued

After standardization by T−3/2 we obtain

T−3/2
∑

tut =
1√
T
(1 + θ)

T∑
t=1

(t/T )ϵt −
1√
T
θϵT +

θ

T

1√
T

T∑
t=1

ϵt−1.

1. First term obeys CLT
2. Second Term goes to zero
3. Third Term goes to zero

Thus ,
T 3/2(β̂T − β) =⇒

(
0, 3σ2

ϵ (1 + θ)2
)
.



Remark

Consider the following model with iid disturbances

yt = βt + ut , ut ∼ iid(0, σ2
ϵ (1 + θ2)).

The unconditional variance of the disturbances is the same as in
the model with moving average disturbances. It can be verified that

T 3/2(β̂T − β) =⇒
(
0, 3σ2

ϵ (1 + θ2)
)
.

If θ is positive then the limit variance of the OLS estimator in the
model with iid disturbances is smaller than in the trend model with
moving average disturbances.

Positive serial correlated data are less informative than iid data.



Sampling Distributions



Stochastic Trends

We looked at stationary model and deterministic trend models so
far.

Now we will examine univariate models with a stochastic trend of
the form

yt = ϕ0 + yt−1 + ϵt ϵt ∼ iid(0, σ2)

This particular model is called a random walk with drift.

The variable yt is said to be integrated of order one.



Cointegration

Moreover, we will consider bivariate models with a common
stochastic trend

y1,t = γy2,t + u1,t (8)
y2,t = y2,t−1 + u2,t (9)

where [u1,t , u2,t ]
′ ∼ iid(0,Ω). Both y1,t and y2,t have a stochastic

trend. However, there exists a linear combination of y1,t and y2,t ,
namely,

y1,t − γy2,t = ut

that is stationary. Therefore, y1,t and y2,t are called cointegrated.



Background

In the late 80s and early 90s, this was a super hot research area.
▶ Dickey and Fuller (1979) examined the sampling distribution

of estimators for autoregressive time series with a unit root
and provided tables with critical values for unit root tests.

▶ In Phillips (1986) and (1987) published two papers on spurious
regression and time series regressions with a unit root that
employ the mathematical theory of convergence of probability
measures for metric spaces. This marks a “technological
breakthrough” and the field started to grow at an exponential
rate thereafter.



Three Choices

Consider the first order autoregressive model with mean zero:

yt = ϕyt−1 + ϵt , ϵt ∼ iidN (0, σ2)

Three cases
▶ |ϕ| < 1: stationarity! we talked about this last week
▶ |ϕ| > 1: explosive! We will not analyze explosive processes in

this course.
▶ |ϕ| = 1. This is the unit root and will be the focus of this

part of the lecture. If ϕ = 1 then the AR(1) model simplifies to

yt = yt−1 + ϵt

With ∆ = 1 − L, we have ∆yt = ϵt form a stationary process, the
random walk is called integrated of order one, denoted by I (1).



Difference b/w Stationary AR and Unit Root

Suppose that the AR process is initialized by y0 ∼ N (0, 1). Then
yt can be expressed as

yt = ϕty0 +
t∑

τ=1

ϕτ−1ϵt+1−τ

▶ The unconditional mean of yt is given by

E[yt ] = ϕt−1E[y0] +
t∑

τ=1

ϕτ−1E[ϵτ ] = 0



Differences, continued

The unconditional variance is yt is given by

var [yt ] = ϕ2(t−1)var [y0] +
t∑

τ=1

ϕ2(τ−1)var [ϵτ ] (10)

= ϕ2(t−1)var [y0] + σ2
t∑

τ=1

ϕ2(τ−1)

=

{
ϕ2(t−1)var [y0] + σ2 1−ϕ2t

1−ϕ2 −→ σ2

1−ϕ2 if |ϕ| < 1
var [y0] + σ2t −→ ∞ if |ϕ| = 1

as t → ∞.



Differences, continued

The conditional expectation of yt given y0 is

E[yt |y0] = ϕτ−1y0 −→
{

0 if |ϕ| < 1
y0 if ϕ = 1

}
as t → ∞.
In the unit root case, the best prediction of future yt is the initial
y0 at all horizons, that is, “no change”.

In the stationary case, the conditional expectation converges to the
unconditional mean. For this reason, stationary processes are also
called “mean reverting”.



Result

Stationary and unit root processes differ in their behavior over long
time horizons.

Suppose that σ2 = 1, and y0 = 1. Then the conditional mean and
variance of a process yt with ϕ = 0.995 is given by

Horizon t 1 2 5 10 20 50 100
E[yt | y0] 0.995 0.990 0.975 0.951 0.905 0.778 0.606
V[yt | y0] 1.000 1.990 4.901 9.563 18.21 39.52 63.46

If interestered in long run predictions, very important to distinguish
these two cases.

But note: long run predictions face serious extrapolation problem.



Frequentist Approach

To get a unit root test of the null hypothesis H0 : ϕ = 1, we have
to find the sampling distribution of a suitable test statistic such as
the t ratio

ϕ̂T − 1√
σ2/

∑
y2
t−1

Under the generating mechanism

yt = ϕ0 + yt−1 + ϵt , iid(0, σ2)

For stationary processes used a variety of WLLN and CLTs,
unfortunately, these don’t apply.



Heuristic Overview of Asymptotics
Assume that ϕ0 = 0, σ = 1, and y0 = 0. Thus, the process yt can
be represented as

yT =
T∑
t=1

ϵt

Summations will range from t = 1 to T unless stated otherwise.
The central limit theorem for iid random variables implies

yT√
T

=
1√
T

∑
ϵt =⇒ N (0, 1)

This suggests that

1
T

∑
yt =

1√
T

∑[√
t

T

1√
t

t∑
τ=1

ϵτ

]

will not converge to a constant in probability but instead to a
random variable.
Need a more elegant approach!



A Twist on our framework

We used T = {0,±1,±2, . . .}.

Consider S = [0, 1]. Consider random elements W (s) that
correspond to functions this interval.

We will place some probability Q on these functions and show that
Q can be helpful in the approximation of the distribution of

∑
yt

Defining probability distributions on function spaces is a pain.



Wiener Measure

Let C be the space of continuous functions on the interval [0, 1].

We will define a probability distribution for the function space C.

This probability distribution is called “Wiener measure”.

Whenever we draw an element from the probability space we obtain
a function W (s), s ∈ [0, 1]. Let Q[·] denote the expectation
operator under the Wiener measure.



Properties of W (s)

▶ If we repeatedly draw functions under the Wiener measure and
evaluate these functions at a particular value s = s ′, then

Q[{W (s ′) ≤ w}] = 1√
2πs ′

∫ w

−∞
e−u2/2s′du

that is,
W (s ′) ∼ N (0, s ′)

If s ′ = 0 then the equations is interpreted to mean
Q[{W (0) = 0}] = 1. Thus W (0) = 0 with probability one.



Properties of W (s)

▶ The random function W (s) has independent increments. If

0 ≤ s1 ≤ s2 ≤ . . . ≤ sk ≤ 1

Then the random variables

W (s2)−W (s1), W (s3)−W (s2) . . . , W (sk)−W (sk−1)

are independent.
▶ The random function W (s) is continuous on s ∈ [0, 1].

Otherwise, contradiction.



More of W (s)

It can be shown that there indeed exists a probability distribution
on C with these properties.

Rougly speaking, the Wiener measure is to the theory of stochastic
processes, what the normal distribution is to the theory related to
real valued random variables.

Note: W (1) ∼ N (0, 1).



Relating this back to our discrete processes

Define the partial sum process

YT (s) =
1√
T

∑
{t ≤ ⌊Ts⌋}ϵt

where ⌊x⌋ denotes the integer part of x . Since we assumed that
ϵt ∼ iid(0, 1), the partial sum process is a random step function.
Interpolation:

ȲT (s) =
1√
T

∑
{t ≤ ⌊Ts⌋}ϵt + (Ts − ⌊Ts⌋)ϵ⌊Ts⌋+1/

√
T



Two ways to randomly generate continuous functions

▶ Draw a function W (s) from the Wiener distribution. We did
not examine how to do the sampling in practice, but since the
Wiener distribution is well-defined, it is theoretically possible.

▶ Generate a sequence ϵ1, . . . , ϵT , where ϵt ∼ iid(0, 1) and
compute ȲT (s).

As T −→ ∞, these are basically the same.

Functional CLT: Let ϵt ∼ iid(0, σ2). Then

YT (s) =
1

σ
√
T

T∑
t=1

{t ≤ ⌊Ts⌋}ϵt =⇒ W (s) □



Simulation of Wiener Process



The upshot

The sum
1
T

∑
yt−1ϵt

convergences to a stochastic integral; i.e.,

Suppose that yt = yt−1 + ϵt , where ϵt ∼ iid(0, σ2) and y0 = 0.
Then

1
σ2T

∑
yt−1ϵt =⇒

∫
W (s)dW (s)

where W (s) denotes a standard Wiener process.

we can use this to develop tests!



Theorem

Suppose that yt = ϕyt−1 + ϵt , where ϵt ∼ iid(0, σ2), ϕ = 1, and
y0 = 0. The sampling distribution of the OLS estimator ϕ̂T of the
autoregressive parameter ϕ = 1 and the sampling distribution of the
corresponding t-statistic have the following asymptotic
approximations

z(ϕ̂T ) =⇒
1
2(W (1)2 − 1)∫ 1

0 W (s)2ds
(11)

t(ϕ̂T ) =⇒
1
2(W (1)2 − 1)[∫ 1
0 W (s)2ds

]1/2 (12)

where W (s) denotes a standard Wiener process. □



How These Sampling Distributions look
import numpy as np
import matplotlib.pyplot as plt
from statsmodels.tsa.ar_model import AutoReg
from scipy.stats import norm

# Parameters
T = 5000 # Length of time series
N_sim = 2000 # Number of simulations
phi_values = [1, 0.95]

# Function to simulate AR(1) process and estimate
def simulate_and_estimate(phi, T, N_sim):

estimates = np.zeros(N_sim)
for i in range(N_sim):

y = np.zeros(T)
for t in range(1, T):

y[t] = phi * y[t-1] + np.random.normal()
model = AutoReg(y, lags=1, trend=’n’).fit()
estimates[i] = (model.params[-1] - phi) / model.bse[-1]

return estimates

# Function to simulate the Wiener process distribution
def simulate_wiener(phi, T, N_sim):

np.random.seed(42)
estimates = np.zeros(N_sim)
for i in range(N_sim):

W = np.random.normal(size=T).cumsum() / np.sqrt(T)
W1 = W[-1]
integral_W2 = np.sum(W**2) / T
estimates[i] = 0.5 * (W1**2 - 1) / integral_W2**0.5

return estimates

# Run simulations
empirical_estimates = {str(phi): simulate_and_estimate(phi, T, N_sim) for phi in phi_values}
phi_1_distribution = simulate_wiener(1, T, N_sim)

# Plot results
plt.figure(figsize=(14, 6))

# Plot for phi = 1
plt.subplot(1, 2, 1)
plt.hist(empirical_estimates[’1’], bins=30, density=True, alpha=0.7, label=’Empirical for $\phi=1$’)
# kde for the theoretical distribution from draws phi_1_distribution
from scipy.stats import gaussian_kde
kde = gaussian_kde(phi_1_distribution)
x = np.linspace(-3, 3, 1000)
plt.plot(x, kde(x), label=’Asymptotic for $\phi=1$’, linestyle=’--’)
plt.title(r’Sampling Distribution for $\phi=1$’)
plt.xlabel(r’$\hat{\phi}$’)
plt.grid()
plt.legend()

# Plot for phi = 0.95
plt.subplot(1, 2, 2)
plt.hist(empirical_estimates[’0.95’], bins=30, density=True, alpha=0.7, label=’Empirical for $\phi=0.95$’)
x = np.linspace(-3, 3, 1000)
plt.plot(x, norm.pdf(x, loc=0, scale=1), label=’Theoretical N(0.95, var)’, linestyle=’--’)
plt.title(r’Sampling Distribution for $\phi=0.95$’)
plt.xlabel(r’$\hat{\phi}$’)
plt.grid()
plt.legend()

plt.tight_layout()
plt.show()



Back to Nelson and Plosser (1982)

log Real GNP: estimated autocorrelation functions of the level and
deviations from the time trend

T ρ̂1 ρ̂2 ρ̂3 ρ̂4 ρ̂5 ρ̂6
Level 62.00 0.95 0.90 0.84 0.79 0.74 0.69
Dev. Trend 62.00 0.87 0.66 0.44 0.26 0.13 0.07

Looks good, but can give misleading results when the underlying
series is integrated.

yt = µ+ ϕ1yt−1 + γt +
K∑

k=1

ϕ∆k∆yt−k + ut .

want to test ϕ1 = 1.



Results

RealGNP
T 62.00
K 2.00
ϕ̂1 0.82
t(ϕ̂1) -2.99
▶ t-stat is the conventional t-stat!
▶ Dickey-Fulley 5 percent critial value is about −3.5.

Thus, one cannot reject the null that real GNP is well described by
a unit root process!



Back to Our Model

We will now analyze a simple bivariate system of cointegrated
processes. Consider the model

y1,t = γy2,t + u1,t (13)
y2,t = y2,t−1 + u2,t (14)

where [u1,t , u2,t ]
′ ∼ iid(0,Ω).

Clearly, y2,t is a random walk. Moreover, it can be easily verified
that y1,t follows a unit root process.

y1,t − y1,t−1 = γ(y2,t − y2,t−1) + u1,t − u1,t−1 (15)

Therefore,

y1,t = y1,t−1 + γu2,t + u1,t − u1,t−1 (16)

Thus, both y1,t and y2,t are integrated processes.



Model Continued

However, the linear combination

[1, −γ]

[
y1,t
y2,t

]
= y1,t − γy2,t = u1,t (17)

is stationary. Therefore, y1,t and y2,t are cointegrated.

The vector [1,−γ]′ is called the cointegrating vector.

Note that the cointegrating vector is only unique up to
normalization.



Rewriting the Model
The model can be rewritten as a VAR(1)

yt = Φ1yt−1 + ϵt (18)

The elements of the matrix Φ1 and the definition of ϵt is given by[
y1,t
y2,t

]
=

[
0 γ
0 1

] [
y1,t−1
y2,t−1

]
+

[
u1,t + γu2,t

u2,t

]
(19)

The matrix Φ1 is of reduced rank in this example of cointegration.
More generally cointegrated system can be casted in the form of a
vector autoregression in levels of yt .

Although both y1,t and y2,t follow univariate random walks, the
cointegrated system cannot be expressed as a vector autoregression
in differences [∆y1,t ,∆y2,t ]

′. Consider[
∆y1,t
∆y2,t

]
=

[
1 − L γL

0 1

] [
u1,t
u2,t

]
= Θ(L)ut (20)

Since |Θ(1)| = 0 the moving average polynomial is not invertible
and no finite order VAR could describe ∆yt .



VECM
The cointegrated model can be written in the so-called vector error
correction model (VECM) form:[
∆y1,t
∆y2,t

]
=

[
−1
0

]([
1 −γ

] [ y1,t−1
y2,t−1

])
+

[
u1,t + γu2,t

u2,t

]
(21)

The term([
1 −γ

] [ y1,t−1
y2,t−1

])
= y1,t−1 − γy2,t−1 (22)

is called error correction term. In economic models it often reflects
a long-run equilibrium relationship such as a constant ratio of
consumption and output. If the economy is out of equilibrium in
period t − 1, that is, y1,t−1 − γy2,t−1 ̸= 0, then the economy
adjusts toward its long-run equilibrium and t−1[∆yt ] ̸= 0. If the
“true” cointegrating vector is known, then both the left-hand-side
variables and the error correction term are stationary.
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