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What are Bayesian Nonparametrics?

We start with data y1, . . . , yn drawn from a distribution G .

A ’statistical model’ g is a pdf of G , where g ∈ G = {gθ : θ ∈ Θ}.

If θ is finite, we are into the realm of parametric statistics.

If θ is infinite, we are into the realm of nonparametric statistics.

Bayesian nonparametrics complete the above probability model with
a prior distribution on the infinite-dimensional parameter θ.



Density Estimation

Density estimation: given an observed sample, infer underlying
density.

yi |G
iid∼ G , i = 1, . . . , n.

Bayesian inference: complete the model with a prior probability
model π for the unknown parameter G .

We need a probability model for the infinite dimensional parameter
G , a BNP prior



Dirichlet Process

A Dirichlet Process (DP) is a probability distribution over
probability distributions, first introduced in (Ferguson, Thomas S.,
1973).

It is parameterized by a base measure G0 and a concentration
parameter α.

Formally, given a base measure G0 and a concentration parameter
α, a random distribution G is said to be distributed according to a
Dirichlet Process, denoted as G ∼ DP(α,G0), if for any finite
partition {Ai} of the sample space:

(G (A1), ...,G (An)) ∼ Dir(αG0(A1), ..., αGn(An))

Kolmogorov’s consistency theorem guarantees that there exists a
random probability measure G such that the above property holds.



Definition of a Dirichlet Random Variable
The Dirichlet distribution is a probability distribution over
probability distributions in a finite-dimensional simplex.

Let X = (X1, ...,Xn) be a random vector that follows a Dirichlet
distribution with parameters α1, ..., αn, such that:

X ∼ Dir(α1, ..., αn)

Then, the joint probability density function of X is given by:

p(X ) =
1

B(α)

n∏
i=1

Xαi−1
i ,

where B(α) is the multinomial Beta function, defined as:

B(α) =

∏n
i=1 Γ(αi )

Γ(
∑n

i=1 αi )

The Dirichlet Process can be seen as an extension of the Dirichlet
distribution to an infinite number of dimensions.



Some Properties of the Dirichlet Process

Consider the sample space {B,Bc}. We have:
1. G has the same support as G0. That is,

Pr [G (B) > 0] = 1 ⇐⇒ G0(B) > 0. This is because
G (B) ∼ Dir(αG0(B), αG0(B

c)).

2. For all B , E[G (B)] = G0(B). This is because
E[G (B)] = αG0(B)

αG0(B)+αG0(Bc ) = G0(B).

3. For all B , V[G (B)] = G0(B)(1−G0(B))
1+α .



Constructing DP: Stick Breaking

(Sethuraman, Jayaram, 1994) showed that the Dirichlet Process
can be constructed using a stick-breaking process.

Imagine you have a stick of length 1, and you break it at a random
point V1, such that V1 ∼ Beta(1, α).

You then take the remaining stick of length 1 − V1 and break it at
a random point V2, such that V2 ∼ Beta(1, α).

The total length of the second stick is W2 = (1 − V1)V2 (and the
first stick is length V1).

If we repeat this n times, we’re left with a set of realization of
random variables W1,W2, ..., such that

∑
i=1

nWi = 1.



More stick breaking:

To complete a construction of the DP, we draw θi ∼ G0 for
i = 1, . . . , n.

We are left with the (discrete) random probability measure:

G (·) =
n∑

i=1

Wiδθi (·), with δθi (·) ∼ G0.

As n becomes large, G ∼ DP(α,G0).

How does this work?



The Role of α



Thinking this through

The concentration parameter α controls the amount of mass that is
assigned to the atoms θi .

If α is very large, then all of the sticks will be small and the
resulting distribution will “look” a lot like the base measure G0.

If α is very small, then the first few sticks will be large, and the
resulting distribution will be a mixture of the base measure G0 and
the atoms θi .



Varying α

Let’s let α vary in {1, 20, 100} and see how the resulting
distributions change.

We’ll use a base measure G0 that is a normal distribution with
mean 0 and variance 1.

We’ll take 1000 draws from the DP and plot density estimates of
the resulting distributions.



DP as a Prior (and Posterior)

The DP is used as a prior for the distribution of the data, and the
posterior distribution of the DP is also a DP.

Let X1, . . . ,Xn be an (iid) random sample from a distribution F .

Let G be a DP prior with base measure G0 and concentration
parameter α.

Then the posterior distribution of G given X1, . . . ,Xn is:

G | X1, . . . ,Xn ∼ DP

(
α+ n,

α

α+ n
G0 +

n

α+ n

1
n

n∑
i=1

δXi

)
.



An Example

Let’s take a look at an example of the DP as a prior and posterior.

We’ll use a base measure G0 that is a normal distribution with
mean 0 and variance 1. We’ll set α = 10.

Suppose we observe 10 data points from a normal distribution with
mean µ = −3 and variance σ2 = 0.1.

We’ll take 100 draws from the DP prior and posterior and plot
density estimates of the resulting distributions.



The Prior and Posterior



Posterior Predictive Distribution

The posterior predictive distribution is the distribution of a new
observation given the data.

Then the posterior predictive distribution of Xn+1 given X1, . . . ,Xn

is:

Xn+1 | X1, . . . ,Xn ∼
∫

F (·) dG ∼ α

α+ n
G0 +

n

α+ n

1
n

n∑
i=1

δXi
.

This is the mixture of the prior and the empirical distribution of the
data.

We can draw from this distribution by drawing from the base
measure and the empirical distribution and then choosing between
them with probability α

α+n and n
α+n , respectively.



An Example
Let’s take a look at an example of the posterior predictive
distribution of the earlier example.



Dirichlet Process Mixtures (DPM)

The Dirichlet Process Mixture (DPM) is a Bayesian nonparametric
model that uses the DP as a prior on the mixing distribution.

That is, suppose we believe that the data are generated from a
mixture of distributions (e.g., a mixture of normals).

Then we can use the DP as a prior on the mixing distribution.

We don’t need to know the number of components in the mixture!

Reference: (Antoniak, Charles E, 1974)



An example

Suppose we have a (possibly infinite) mixture of normals with
unknown mean and variance.

{µk , σ
2
k}∞k=1 ∼ G , G ∼ DP(α,G0)

Our data is distributed as:

Xi | µk , σ
2
k ∼ N (µk , σ

2
k)

We can estimate this model via a Gibbs sampler, see (Neal,
Radford M, 2000) and (Escobar, Michael D and West, Mike, 1995).



DPM



Extension: Pitman-Yor process

The DP is a special case of the Pitman-Yor process (PYP).

The PYP is parameterized by α, G0, and an additional parameter
d ∈ [0, 1).

d has the interpretation of a “discount” parameter. (DP is the
special case where d = 0.)

It’s best understood in the context of its stick-breaking
construction.



Stick-breaking for the PYP

The stick-breaking construction for the PYP is similar to that of
the DP.

We are going to draw our stick lengths from a beta distribution,
but with a twist.

For i = 1, 2, . . ., we draw from Vi ∼ B(1 − d , α+ id) distribution.

For larger values of d , the initial Vi are likely to



The role of d



PYP vs DP
Mean weights: 0.0100, std: 0.019
Mean weights: 0.0100, std: 0.007



Gaussian Process

A Gaussian Process (GP) is a collection of random variables, any
finite number of which have a joint Gaussian distribution.

It is completely specified by its mean function m(x) and covariance
function k(x , x ′).

Formally: GP(m(x), k(x , x ′)) which can be used to model a
distribution over functions f (x).

As long as the covariance function is “valid,” Kolmogorov’s
consistency theorem guarantee’s such a process exists.



Properties
A GP is completely characterized by its mean and covariance
functions.

The mean function defines the expected value of the function at
any point.

m(x) = E[f (x)]

The covariance function defines the covariance between the
function values at any two points.

k(x , x ′) = E[(f (x)−m(x))(f (x ′)−m(x ′))]

A GP is stationary if its mean is constant and covariance function
does not depend on the absolute input values but only on the
relative distances.

A GP is isotropic if its covariance function depends only on the
Euclidean distance between the input points.



Simulating From a Gaussian Process
For example, we can use a zero mean function and a squared
exponential covariance function.

m(x) = 0 and k(x , x ′) = σ2 exp

(
−(x − x ′)2

2l2

)
where σ2 is the variance and l is the length scale.

Let’s set σ2 = 1 and l = 1. Simulate as follows:
1. Make a grid of points {x}ni=1 where we want to sample the

function.
2. Compute the covariance matrix K for the grid points.

K = [k(xi , xj)]
n
i ,j=1

3. Sample from a multivariate normal distribution with mean
µ = m(x) = 0 and covariance K .



Example: 1000 Samples from a GP



Another example with a different covariance function



Posterior Inference

Suppose we have some data {xi , yi}ni=1 and we want to infer the
function f (x) that generated the data. We write:

yi = f (xi ) + ϵi , ϵi
iid∼ N (0, σ2)

We can use a GP prior on f (x) and then use Bayes’ rule to
compute the posterior distribution of f (x) given the data. Let
Y = (y1, . . . , yn) and X = (x1, . . . , xn).

The posterior distribution of f (x) is also a GP with mean and
covariance:

m = m + K [K + σ2I ]−1(Y −m) and K = K − K [K + σ2I ]−1K



Example: GP Autoregression

Let xt be a time series of year over year inflation rates.



Example: GP Autoregression
Let’s use a GP to model the time series:

xt = f (xt−1) + ϵt , ϵt ∼ N(0, σ2)

We’ll use a GP prior with a squared exponential covariance function:

m(x) = 3 and k(x , x ′) = κ2 exp

(
−(x − x ′)2

2l2

)
.



Classification: Gaussian Process Classification

▶ Gaussian Process Classification (GPC) is a nonparametric
method for modeling the relationship between input variables
and a categorical output variable.

▶ GPC extends the Gaussian Process framework to classification
problems using a link function, such as the logistic or probit
functions.
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