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Most presentations of econometrics focus on frequentist inference. That is, the properties of
estimators and, more generally, inference procedures were examined from the perspective of repeated
sampling experiments. The measures of accuracy and performance used to assess the statistical
procedures were pre-experimental. However, many statisticians and econometricians believe that
post-experimental reasoning should be used to assess inference procedures, wherein only the actual
observation Y T is relevant and not the other observations in the sample space that could have been
observed,

Example 0.1. Suppose Y1 and Y2 are independently and identically distributed and

Pθ{Yi = θ − 1} =
1

2
, Pθ{Yi = θ + 1} =

1

2

Consider the following confidence set for the parameter θ in Example 0.1:

C(Y1, Y2) =

{
1
2(Y1 + Y2) if Y1 ̸= Y2
Y1 − 1 if Y1 = Y2

Figure 1 displays the confidence sets for the parameter θ based on the realizations of Y1 and Y2.
Note that each of the four boxes are equiprobable. In the case that Y1 ̸= Y2 (the cross hatched
grey boxes), the confidence set contains the true value θ. When Y1 = Y2 = θ + 1 (the grey box
in the upper left), the confidence set will again contain θ. But when Y1 = Y2 = θ − 1 (the white
box in the lower left), the confidence will not contain θ. Thus, from a pre-experimental perspective
C(Y1, Y2) is a 75% confidence interval. Since three of four (equally likely) boxes have realized
confidence sets which contain θ, the the probability (under repeated sampling, conditional on θ)
that the confidence interval contains θ 75%. But after seeing the realizations—the only way one
can actually compute a confidence interval—we are a “100% confident” that C(Y1, Y2) contains the
“true” θ if Y1 ̸= Y2, whereas we are only “50% percent” confident if Y1 = Y2. This is the Bayesian
post-experimental perspective, which emphasizes the role observed data. Does it make sense to
report a pre-experimental measure of accuracy, when it is known to be misleading after seeing the
data? The following conditionality principle appears quite reasonable.

1



Y1 = θ − 1 Y1 = θ + 1

Y2 = θ − 1

Y2 = θ + 1

C(Y1, Y2) = θ − 2

C(Y1, Y2) = θ

C(Y1, Y2) = θ

C(Y1, Y2) = θ

Figure 1: Confidence Sets for Example 0.1

We’ll begin with two core principles that will guide the discussion on inferential procedures.
While both principles are widely accepted by statisticians, there is less consensus regarding their
implications for inference.

Definition 0.1: Conditionality Principle

Conditionality Principle: If an experiment is selected by some random mechanism indepen-
dent of the unknown parameter θ, then only the experiment actually performed is relevant.

The conditionality principle highlights the importance of focusing soley on the realized data
from an experiment, rather than on hypothetical scenarios that may have occurred but in fact did
not. In the context of our Example 0.1, the realized values of Y1 and Y2 dictate the set of plausible
values for the parameter θ.

The next principle focuses on the subject of parsimony in inference.

Definition 0.2: Sufficiency Principle

Sufficiency Principle: Consider an experiment to determine the value of an unknown param-
eter θ and suppose that S(·) is a sufficient statistic. If S(Y1) = S(Y2) then Y1 and Y2 contain
the same evidence with respect to θ.

The concept of sufficiency in statistics relates features of data to information about the parameter
of interest. A statistic is said to be sufficient for a parameter if the conditional distribution of
the data, given the statistic, does not depend on the parameter. The combination of the quite
reasonable Conditionality Principle and the Sufficiency Principle lead to the more controversial
Likelihood Principle (see discussion in Robert (1994)).
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Definition 0.3: Likelihood Principal

Likelihood Principle: All the information about an unknown parameter θ obtainable from
an experiment is contained in the likelihood function of θ given the data. Two likelihood
functions for θ (from the same or different experiments) contain the same information about
θ if they are proportional to one another.

Frequentist maximum-likelihood estimation and inference typically violates the Likelihood Principle
(for a discussion see Robert (1994)) although it is based on likelihood functions. We will now study
the Bayesian implementation of the Likelihood Principle.

A Bayes model consists of a parametric probability distribution for the data, which we will
characterize by the density p(Y T |θ), and a prior distribution p(θ). The density p(Y T |θ) interpreted
as a function of θ with fixed Y T is the likelihood function. Data generation from such a model would
consist of drawing a parameter θ from the prior distribution p(θ) and drawing a set of observations
from the distribution p(Y T |θ′). The posterior distribution of the parameter θ, that is, the conditional
distribution of θ given YT , can be obtained through Bayes theorem:

p(θ|Y T ) =
p(Y T |θ)p(θ)∫
p(Y T |θ)p(θ)dθ

(1)

One can interpret this formula as an inversion of probabilities. If you think of the parameter θ as
“cause” and the data Y T as “effect”, then the formula allows the calculation of the probability of
a particular “cause” given the observed “effect” based on the probability of the “effect” given the
possible “causes”.

Unlike in the frequentist framework, the parameter θ is regarded as a random variable. This does,
however, not imply that Bayesians consider parameters to be determined in a random experiment.
The calculus of probability is used to characterize the state of knowledge or the degree of beliefs of
an individual with respect to events or quantities that have not (yet) been observed, and may not
be observed, by that individual. The Bayesian approach prescribes consistency among the beliefs
held by an individual, and their reasonable relation to any kind of objective data.
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Figure shows an illustrative example of how prior beliefs, represented by the prior distribution,
are updated by the data through the likelihood function to form the posterior distribution. The
likelihood function is centered at 2, while the prior is centered at 0. The posterior distribution is
a combination of the two, with the likelihood function having a stronger influence on the posterior
distribution due to the data being more informative than the prior.

Any inference in a Bayesian framework is to some extent sensitive to the choice of prior distribu-
tion p(θ). The prior reflects the initial state of mind of an individual and is therefore “subjective”.
Many econometricians believe that the result of a scientific inquiry should not depend on the sub-
jective beliefs of a researcher, and, are very skeptical of Bayesian methods. On the other hand, any
econometric analysis and scientific investigation involves subjective choices by the researcher. (How
did one decide which model to estimate?) The Bayesian approach simply makes these choices trans-
parent. For the conclusions to be convincing among a group of individuals it is of course important
to choose the prior carefully.

Bayesians have come up with several ideas on how to handle the delicate issue of priors. Box and
Tiao (1973) advocated to report likelihood functions rather than posteriors and let the audience use
their own priors. An alternative approach is to choose a “reasonable” class of priors and demonstrate
the conclusions are robust to changes of the prior distribution within this class. If there is additional
information for a particular problem available it is usually good to incorporate this information into
the prior to obtain more precise conclusions. The prior distribution could be interpreted as an
augmentation of the data set. That is important for models that have many parameters relative
to the number of observations that is available. Another approach are so-called “Objective Bayes”
methods (see, for example, Berger (2006)) that seek to construct prior distributions in a systematic,
non-subjective way, often based on principles of invariance—that is, prior distributions that remain
unchanged under transformations of the data or parameters—or other criteria such as maximum
entropy. These priors are typically non-informative or weakly informative priors, and are designed
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to minimize the influence of the prior on the posterior distribution while still adhering to Bayesian
principle.

A prior distribution is called improper if∫
Θ
p(θ)dθ = ∞ (2)

Attempts to make priors non-informative, for instance, uniform on the real line, lead to improper
priors. Maximum likelihood estimators can usually be interpreted as Bayes estimators that are
based on an improper prior distribution. Bayes can still be used improper priors as long as the
resulting posterior distribution is proper, meaning it integrates to one and can be interpreted as a
valid probability distribution.

Introduction to Bayesian Statistics

We will denote the sample space by Y with elements Y T . A probability distribution P will be
defined on the product space Θ⊗Y. The conditional distribution of θ given Y T is denoted by PY T ,
correspondingly, Pθ denotes the conditional distribution of Y T given θ. E, EY T , and Eθ are the
corresponding expectation operators. As before, we will use {x = x′} as indicator function that is
one if x = x′ and zero otherwise.

Example 0.2. The parameter space is Θ = {0, 1}, and the sample space is Y = {0, 1, 2, 3, 4}.

0 1 2 3 4
Pθ=0(Y ) .75 .140 .04 .037 .033
Pθ=1(Y ) .70 .251 .04 .005 .004

Suppose we consider θ = 0 and θ = 1 as equally likely a priori. Moreover, suppose that the
observed value is Y = 1. The marginal probability of Y = 1 is

P{Y = 1|θ = 0}P{θ = 0} + P{Y = 1|θ = 1}P{θ = 1} = 0.140 · 0.5 + 0.251 · 0.5 = 0.1955 (3)

The posterior probabilities for θ being zero or one are

P{θ = 0|Y = 1} =
P{Y = 1|θ = 0}P{θ = 0}

P{Y = 1}
=

0.07

0.1955
= 0.358

P{θ = 1|Y = 1} =
P{Y = 1|θ = 1}P{θ = 1}

P{Y = 1}
=

0.1255

0.1955
= 0.642

Thus, the observation Y = 1 provides evidence in favor of θ = 1.

Example 0.3. Consider the linear regression model:

yt = x′tθ + ut, ut
i.i.d.∼ N (0, 1), (4)

where xt and θ have dimension k. The regression model can be written as Y = Xθ+U . We assume
that X ′X/T

p−→ QXX and X ′Y
p−→ QXY = QXXθ.
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The likelihood function is of the form

p(Y |X, θ) = (2π)−T/2 exp

{
−1

2
(Y −Xθ)′(Y −Xθ)

}
. (5)

Suppose the prior distribution is of the form

θ ∼ N
(
0k×1, τ

2Ik×k

)
(6)

with density

p(θ) = (2πτ2)−k/2 exp

{
− 1

2τ2
θ′θ

}
(7)

For small values of τ the prior concentrates near zero, whereas for larger values of τ it is more
diffuse. According to Bayes Theorem the posterior distribution of θ is proportional to the product
of prior density and likelihood function

p(θ|Y,X) ∝ p(θ)p(Y |X, θ). (8)

The right-hand-side is given by

p(θ)p(Y |X, θ) ∝ (2π)−
T+k
2 τ−k exp

{
− 1

2
[Y ′Y − θ′X ′Y − Y ′Xθ − θ′X ′Xθτ−2θ′θ]

}
. (9)

The exponential term can be rewritten as follows

Y ′Y − θ′X ′Y − Y ′Xθ − θ′X ′Xθ − τ−2θ′θ

= Y ′Y − θ′X ′Y − Y ′Xθ + θ′(X ′X + τ−2I)θ (10)

=

(
θ − (X ′X + τ−2I)−1X ′Y

)′(
X ′X + τ−2I

)
(
θ − (X ′X + τ−2I)−1X ′Y

)
+Y ′Y − Y ′X(X ′X + τ−2I)−1X ′Y.

Thus, the exponential term is a quadratic function of θ. This information suffices to deduce that
the posterior distribution of θ must be a multivariate normal distribution

θ|Y,X ∼ N (θ̃T , ṼT ) (11)

with mean and covariance

θ̃T = (X ′X + τ−2I)−1X ′Y

ṼT = (X ′X + τ−2I)−1.

The maximum likelihood estimator for this problem is θ̂mle = (X ′X)−1X ′Y and its asymptotic
(frequentist) sampling variance is T−1Q−1

XX .

6



The assumption that both likelihood function and prior are Gaussian made the derivation of the
posterior relatively simple. The pair of prior and likelihood is called conjugate because it leads to a
posterior distribution that is from the same family (multivariate normal) as the prior distribution.

As τ −→ ∞ the prior becomes more and more diffuse and the posterior distribution becomes
more similar to the sampling distribution of θ̂mle|θ:

θ|Y,X approx∼ N
(
θ̂mle, (X

′X)−1

)
. (12)

If τ −→ 0 the prior becomes dogmatic and the sample information is dominated by the prior
information. The posterior converges to a point mass that concentrates at θ = 0. In large samples
(fixed τ , T −→ ∞) the effect of the prior becomes negligible and the sample information dominates

θ|Y,X approx∼ N
(
θ̂mle, T

−1Q−1
XX

)
. □ (13)

After having calculated posterior distributions we will now consider estimation and inference. In
principle, all the information with respect to θ is summarized in the posterior p(θ|Y ) and we could
simply report the posterior density to our audience. However, in many situations our audience
prefers results in terms of point estimates and confidence intervals, rather than in terms of a proba-
bility density. Moreover, we might be interested to answer questions of the form: do the data favor
model M1 or M2?

We will adopt a decision theoretic approach to develop the Bayesian estimation and inference
procedures. In general, there is a decision rule δ(Y T ) that maps observations into decisions, and a
loss function L(θ, δ) according to which the decisions are evaluated.

δ(Y T ) : Y 7→ D (14)

L(θ, δ) : Θ⊗D 7→+ (15)

where D denotes the decision space. The goal is to find decisions that minimize the posterior
expected loss EY T [L(θ, δ(Y T ))]. The expectation is taken conditional on the data x, and integrates
out the parameter θ. A decision theoretic treatment of estimation and inference can be found in
Casella and Berger (2002), Lehmann (1997) Lehmann and Casella (1998), and Robert (1994).

Point Estimation

Suppose the goal is to construct a point estimate δ(Y T ) of θ. It involves two steps:

• Find the posterior p(θ|Y T ).

• Determine the optimal decision δ(Y T ).

The optimal decision depends on the loss function L(θ, δ(Y T )).
Example 1, Continued: Consider the zero-one loss function

L(θ, δ) =

{
0 δ = θ

1 δ ̸= θ
(16)
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The posterior expected loss is

EY [L(θ, δ)] = 1− EY {θ = δ} (17)

The optimal decision rule is

δ = argmaxθ′∈Θ PY {θ = θ′} (18)

that is, the point estimator under the zero-one loss is equal to the parameter value that has the
highest posterior probability. We showed that

P{θ = 0|Y = 1} = 0.358

P{θ = 1|Y = 1} = 0.642

Thus δ(Y = 1) = 1. □
Example 2, Continued: The quadratic loss function is of the form

L(θ, δ) = (θ − δ)2 (19)

The optimal decision rule is obtained by minimizing

min
δ∈D

EY T [(θ − δ)2] (20)

It can be easily verified that the solution to the minimization problem is of the form δ(Y T ) = EY T [θ].
Thus, the posterior mean θ̃T is the optimal point predictor under quadratic loss.

Suppose data are generated from the model yt = x′tθ0+ut. Asymptotically the Bayes estimator
converges to the “true” parameter θ0

θ̃T = (X ′X + τ−2I)−1X ′Y (21)

= θ0 +

(
1

T
X ′X +

1

τ2T
I
)−1( 1

T
X ′U

)
p−→ θ0

The disagreement between two Bayesians who have different priors will asymptotically vanish. □

Testing Theory

Consider the hypothesis test of H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1 where Θ1 = Θ/Θ0. Hypothesis
testing can be interpreted as estimating the value of the indicator function {θ ∈ Θ0}. The decision
space is 0 (“reject”) and 1 (“accept”). Consider the loss function

L(θ, δ) =


0 δ = {θ ∈ Θ0} correct decision
a0 δ = 0, θ ∈ Θ0 Type 1 error
a1 δ = 1, θ ∈ Θ1 Type 2 error

(22)
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Note that the parameters a1 and a2 are part of the econometricians preferences. The optimal
decision rule is

δ(Y T ) =

{
1 PY T {θ ∈ Θ0} ≥ a1/(a0 + a1)

0 otherwise
(23)

This can be easily verified. The expected loss is

EY TL(θ, δ) = {δ = 0}a0PY T {θ ∈ Θ0}+ {δ = 1}a1[1− PY T {θ ∈ Θ0}] (24)

Thus, one should accept the hypothesis θ ∈ Θ0 (choose δ = 1) if

a1PY T {θ ∈ Θ1} = a1[1− PY T {θ ∈ Θ0}] ≤ a0PY T {θ ∈ Θ0} (25)

Often, hypotheses are evaluated according to Bayes factors, that is, the ratio of posterior probabil-
ities and prior probabilities in favor of that hypothesis:

B(Y T ) =
Posterior Odds

Prior Odds
=

PY T {θ ∈ Θ0}/PY T {θ ∈ Θ1}
P{θ ∈ Θ0}/P{θ ∈ Θ1}

(26)

Example 1, Continued: Suppose the observed value of Y is 2. Note that

Pθ=0{Y ≥ 2} = 0.110

Pθ=1{Y ≥ 2} = 0.049

The frequentist interpretation of this result would be that there is significant evidence against
H0 : θ = 1 at the 5 percent level. However, there is not significant evidence against H0 : θ = 0 at
the 10 percent level. Frequentist rejections are based on unlikely events that did not occur.

The Bayesian answers in terms of posterior odds is

PY=2{θ = 0}
PY=2{θ = 1}

= 1 (27)

and in terms of the Bayes Factor B(Y ) = 1. Thus, the observation Y = 2 does not favor one versus
the other model. □
Example 2, Continued: Suppose we only have one regressor k = 1. We showed that the posterior
distribution is of the form Consider the hypothesis H0 : θ < 0 versus H1 : θ ≥ 0. Then,

PY T {θ < 0} = P

{
θ − θ̃T√

ṼT

< − θ̃T√
ṼT

)
= Φ

(
− θ̃T /

√
ṼT

)
(28)

where Φ(·) denotes the cdf of a N (0, 1). Suppose that a0 = a1 = 1 then H0 is accepted if

Φ

(
− θ̃T /

√
ṼT

)
≥ 1/2 or θ̃T < 0 (29)

The Classical rule for a one-sided test with a 5 percent significance level is: “accept” H0 if $ mle /√
{(X ′X)-1} < 1.64$.
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Suppose that yt = xtθ0 + ut. Note that

θ̃T√
ṼT

=

√
(
1

τ2
+
∑

x2t )
−1

∑
xtyt (30)

=
√
Tθ0

1
T

∑
x2t√

1
T

∑
x2t +

1
τ2T

+

1√
T

∑
xtut√

1
T

∑
x2t +

1
τ2T

(31)

θ̃T /
√

ṼT diverges to +∞ if θ0 > 0 and PY T {θ < 0} converges to zero. Vice versa, if θ0 < 0 then
θ̃T /

√
ṼT diverges to −∞ and PY T {θ < 0} converges to one. Thus for almost all values of θ0 (except

θ0 = 0) the Bayesian test will provide the correct answer asymptotically. □
Suppose in the context of Example~2 we would like to test H0 : θ = 0 versus H0 : θ ̸= 0. Since

P{θ = 0} = 0 it follows that PY T {θ = 0} = 0 and the null hypothesis is never accepted. This
observations raises the question: are point hypotheses realistic? Only, if one is willing to place
positive probability λ on the event that the null hypothesis is true. Consider the modified prior

p∗(θ) = λ∆[{θ = 0}] + (1− λ)p(θ)

where ∆[{θ = 0}] is a point mass or dirac function.1 The marginal density of Y T can be derived as
follows ∫

p(Y T |θ)p∗(θ)dθ = λ

∫
p(Y T |θ)∆[{θ = 0}]dθ + (1− λ)

∫
p(Y T |θ)p(θ)dθ

= λ

∫
p(Y T |0)∆[{θ = 0}]dθ + (1− λ)

∫
p(Y T |θ)p(θ)dθ

= λp(Y T |0) + (1− λ)

∫
p(Y T |θ)p(θ)dθ (32)

The posterior probability of θ = 0 is given by

PY T {θ = 0} = lim
ϵ−→0

PY T {0 ≤ θ ≤ ϵ} (33)

= lim
ϵ−→0

λ
∫ ϵ
0 p(Y T |θ)∆[{θ = 0}]dθ + (1− λ)

∫ ϵ
0 p(Y T |θ)p(θ)dθ

λp(Y T |0) + (1− λ)
∫
p(Y T |θ)p(θ)dθ

=
λp(Y T |0)

λp(Y T |0) + (1− λ)
∫
p(Y T |θ)p(θ)dθ

. (34)

Example 2, continued: Assume that λ = 1/2. In order to obtain the posterior probability that
θ = 0 we have to evaluate

p(Y |X, θ = 0) = (2π)−T/2 exp

{
−1

2
Y ′Y

}
(35)

1You can think of the function ∆[{θ = θ0}] as the “limit”

lim
n→∞

[n− n(θ − θ0)/2]{θ0 ≤ θ ≤ θ0 + 2/n}

The area under this triangle is always one! The dirac function has the properties: ∆[{θ = θ0}] = ∞ for θ = θ0 and
zero otherwise. However, it always integrates to one:

∫
∆[{θ = θ0}]dθ = 1.
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and calculate the marginal data density

p(Y |X) =

∫
p(Y |X, θ)p(θ)dθ. (36)

Generally, the calculation of p(Y |X) requires the solution to a difficult integration problem. How-
ever, in this example we can use the following simplification. Note that Bayes Theorem can be
rewritten as follows

p(Y |X) =
p(Y |X, θ)p(θ)

p(θ|Y,X)
. (37)

Since, we previously showed that the posterior p(θ|Y,X) is multivariate normal all the terms on the
right-hand-side are known:

p(Y |X) =
(2π)−T/2(2π)−k/2τ−k exp

{
−1

2 [(θ − θ̃)′Ṽ −1(θ − θ̃)]
}

(2π)−k/2|X ′X + τ−2I|1/2 exp
{
−1

2 [(θ − θ̃)′Ṽ −1(θ − θ̃)]
} (38)

× exp

{
−1

2
[Y ′Y − Y ′X(X ′X + τ−2I)−1X ′Y ]

}
= (2π)−T/2τ−k|X ′X + τ−2|−1/2

× exp

{
−1

2
[Y ′Y − Y ′X(X ′X + τ−2I)−1X ′Y ]

}
.

According to Equation~(33) the posterior odds ratio in favor of the null hypothesis is given by

PY T {θ = 0}
PY T {θ ̸= 0}

= τk|X ′X + τ−2|1/2 exp
{
−1

2
[Y ′X(X ′X + τ−2I)−1X ′Y ]

}
(39)

Taking logs and standardizing the sums by T−1 yields

ln

[
PY T {θ = 0}
PY T {θ ̸= 0}

]
= −T

2

(
1

T

∑
xtyt

)′( 1

T

∑
xtx

′
t +

1

τ2T

)−1( 1

T

∑
xtyt

)
+
k

2
lnT +

1

2
ln

∣∣∣∣ 1T ∑
xtx

′
t +

1

τ2T

∣∣∣∣+ k ln τ (40)

In order to understand this expression for the log-posterior odds, we will assume that data were
generated from the model yt = x′tθ0 + ut. Then

Y ′X(X ′X + τ−2)−1X ′Y

= θ′0X
′X(X ′X + τ−2)−1X ′Xθ0 + U ′X(X ′X + τ−2)−1X ′U (41)

+U ′X(X ′X + τ−2)−1X ′Xθ0 + θ′0X(X ′X + τ−2)−1X ′U

= Tθ′0

(
1

T

∑
xtx

′
t

)−1

θ0 +
√
T2

(
1√
T

∑
xtut

)′
θ0

+

(
1√
T

∑
xtut

)′( 1

T

∑
xtx

′
t

)−1( 1√
T

∑
xtut

)
+Op(1). (42)
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Keeping track only of the term that dominates as T −→ ∞, we obtain the following large sample
approximation of the log-posterior odds. If the null hypothesis is satisfied θ0 = 0 then

ln

[
PY T {θ = 0}
PY T {θ ̸= 0}

]
=

k

2
lnT + small −→ +∞. (43)

That is, the posterior odds in favor of the null hypothesis converge to infinityand the posterior
probability of θ = 0 converges to one. On the other hand, if the alternative hypothesis is true
θ0 ̸= 0 then

ln

[
PY T {θ = 0}
PY T {θ ̸= 0}

]
= −T

2
θ′0

(
1

T

∑
xtx

′
t

)−1

θ0 + small −→ −∞. (44)

and the posterior odds converge to zero, which implies that the posterior probability of the null
hypothesis being true converges to zero. □

We showed in the example that the Bayesian test is consistent in the following sense. If the
null hypothesis is “true” then the posterior probability of H0 converges in probability to one as
T −→ ∞. If the null hypothesis is false then the posterior probability of H0 tends to zero. Thus,
asymptotically the Bayesian test procedure has no “Type 1” error.

To understand this property consider the marginal data density p(Y |X) in Example 2. The
terms that asymptotically dominate are

ln p(Y |X) = −T

2
ln(2π)− 1

2
(Y ′Y − Y ′X(X ′X)−1X ′Y )− k

2
lnT + small (45)

= ln p(Y |X, θ̂mle)−
k

2
lnT + small

= maximized likelihood function − penalty. (46)

The marginal data density has the form of a penalized likelihood function. The maximized likelihood
function captures the goodness-of-fit of the regression model in which θ is freely estimated. The
goodness-of-fit is non-decreasing in the number of regressors k. The second term penalizes the
dimensionality to avoid overfitting the data. Any additional parameter is penalized with −1

2 lnT .
The Bayesian test can be compared to a classical likelihood ratio (LR) statistic. The LR test

is based on the ratio of the likelihood function evaluated at the (unrestricted) maximum under the
alternative and the maximum subject to the restriction imposed by the null hypothesis. In the
context of Example~2

LR = 2 ln

[
p(Y |X, θ̂mle)

p(Y |X, θ = 0)

]
(47)

= Y ′X(X ′X)−1X ′Y. (48)

By construction the LR-statistic is always positive. However, under the null hypothesis that the
restriction θ = 0 is satisfied in the population, we expect it to be small. Suppose that H0 is satisfied,
then the likelihood ratio statistic

LR =

(
1√
T

∑
xtut

)′( 1

T

∑
xtx

′
t

)−1( 1√
T

∑
xtut

)
=⇒ χ2

k (49)
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converges in distribution to a χ2 random variable with k degrees of freedom.
A frequentist typically accepts the null hypothesis θ = 0 if

Y ′X(X ′X)−1X ′Y < χ2
k,crit (50)

where χ2
k,crit is a critical value, determined by the desired size (Type 1 error) of the test. A Bayesian

favors the null hypothesis over the alternative hypothesis is

Y ′X(X ′X)−1X ′Y < k lnT + small (51)

Thus, the implied Bayesian critical value tends to infinity at logarithmic rate. Consequently, the
size of the test converges to zero asymptotically and the Type 1 error vanishes.

Bayesians often criticize the fact that frequentist tests reject “true” null hypotheses infinitely
often as more information is accumulated. Suppose in Example~2 k = 1 and xt = 1. Under the
null hypothesis θ = 0 the sample average of the yt’s behaves asymptotically as follows

1

T

∑
yt

p−→ 0,
1√
T

∑
yt =⇒ N (0, 1) (52)

Moreover, the sum of yt’s satisfies a law of iterated logarithms. With probability one,

1√
2 ln lnT

1√
T

∑
yt ∈ J (53)

infinitely often as T −→ ∞ for every open subinterval J of [−1, 1]. The test statistic for the null
hypothesis is

LR =

(
1√
T

∑
yt

)2

. (54)

Thus, the null hypothesis is rejected whenever

1√
2 ln lnT

∣∣∣∣ 1√
T

∑
yt

∣∣∣∣ ≥ 1√
2 ln lnT

√
χ2
1,crit (55)

Suppose that T > T ∗, where
√
2 ln lnT = 2

√
χ2
1,crit. Thus the test rejects, whenever

1√
2 ln lnT

1√
T

∑
yt ∈ (0.5, 1) (56)

which happens infinitely often according to the law of iterated logarithm. The cynical view of this
result is that every null hypothesis can be rejected as long as enough data are collected.

In defense of the classical hypothesis test, it can be pointed out that it has asymptotically power
against local alternatives of the form

HA : θ =
C√
T

(57)

In this case the likelihood ratio test statistic converges in distribution to a non-central χ2. The
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larger the local alternative C, the higher is the probability that the LR statistic exceeds the critical
value, that is, the more powerful the test is. It can be verified that a Bayesian test procedure has
asymptotically no power against this local alternative. If data are generated with θ = C/

√
T the

posterior odds of θ = 0 versus θ ̸= 0 will tend to infinity. In order to test small deviations from the
null hypothesis in a Bayesian framework one has to modify the prior distribution for θ to reflect the
believe that θ is either zero or very close to zero.

Confidence Sets

The frequentist definition is that CY T ⊆ Θ is an α confidence region if

Pθ{θ ∈ CY T } ≥ 1− α ∀θ ∈ Θ (58)

A Bayesian confidence set is defined as follows. CY T ⊆ Θ is α credible if

PY T {θ ∈ CY T } ≥ 1− α (59)

A highest posterior density region (HPD) is of the form

CY T = {θ : p(θ|Y T ) ≥ kα} (60)

where kα is the largest bound such that

PY T {θ ∈ CY T } ≥ 1− α

The HPD regions have the smallest size among all α credible regions of the parameter space Θ.
Example 2, continued: The Bayesian highest posterior density region with coverage 1−α for θj
is of the form

CY T =
[
θ̃T,j − zcrit[ṼT ]

1/2
jj ≤ θj ≤ θ̃T,j + zcrit[ṼT ]

1/2
jj

]
where [ṼT ]jj is the j’th diagonal element of ṼT , and zcrit is the α/2 critical value of a N (0, 1). In
the Gaussian linear regression model the Bayesian interval is very similar to the classical confidence
interval, but its statistical interpretation is quite different. □

Bayesian Inference for the AR(p) Model

Consider the model autoregressive AR(p) model of the form ϕ(L)yt = ϵt, where ϵt|Y t−1 i.i.d.∼
N (0, σ2

ϵ ). We showed before that the likelihood function is of the form

p(Y T |ϕ1, . . . , ϕp, σ) = (2πσ2)−T/2 exp

{
− 1

2σ2

∑
[ϕ(L)yt]

2

}
. (61)

This model can be rewritten as a linear regression model

yt = x′tϕ+ ϵt (62)
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or

Y = Xϕ+ E, (63)

where Y is a T × 1 vector with elements yt, E is a T × 1 vector with elements ϵt,and X is a
T × p matrix with rows x′t = [yt−1, . . . , yt−p]. As before, we assume that the underlying process has
mean zero. A generalization to processes with non-zero mean is straightforward. Using this matrix
notation, the likelihood function becomes

p(Y |ϕ, σ) = (2π)−T/2σ−T exp

{
− 1

2σ2
(Y −Xϕ)′(Y −Xϕ)

}
(64)

and has the same form as the likelihood function of the linear regression model analyzed in Example
2.

To complete the specification of the Bayesian AR(p) model we have to choose our prior. As
demonstrated in the preceding sections, for some choices of prior distributions it is possible to
obtain analytic solutions for the posterior distribution and its relevant marginal distributions. A
prior distribution is called conjugate for a particular likelihood function, if the resulting posterior
distribution belongs to the same distribution family as the prior distribution. Conjugate families are
therefore convenient to analyze and were very popular up until the early nineties. During the recent
decade, Bayesians made substantial advances in the numerical analysis of posterior distributions
which allowed them to consider more general prior distributions.

Previously, we assumed that the standard deviation σ = 1. A complete analysis of the AR(p)
model, or the linear regression model more generally, would include a prior on σ as well. It is
quite common to use a non-informative prior of the form p(σ) ∝ σ−1. However, this prior is
improper because it does not integrate to unity. Working with improper priors requires additional
care because one has to ensure that the conditional distribution of the parameters given the data
and its marginals are proper. In the linear model this is indeed the case as soon as the number of
observations exceeds the number of parameters.

Alternatively one can use a proper prior that is of the inverse gamma form, such as

p(σ|h, s) ∝ σ−(h+1) exp

{
−hs2

2σ2

}
. (65)

The improper prior from above corresponds to the inverse gamma prior with h = 0. Inference with
respect to β should be based on the marginal distribution

p(ϕ|Y ) =

∫
p(ϕ, σ|Y )dσ. (66)

A full treatment of the linear model, in which a non trivial prior is placed on σ, can be found, e.g.,
in Zellner (1971).
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Some Exercises

Problem 1

Consider the following AR(1) process, initialized in the infinite past:

yt = θyt−1 + ϵt, (67)

where ϵt ∼ iidN (0, 1).

1. Suppose you have a sample of observations Y T = {y0, y1, . . . , yT }. Derive the conditional
likelihood function p(Y T |θ, y0) for θ based on Y T .

2. Consider the following prior for θ: θ ∼ N (0, τ2). Show that the posterior distribution of θ is
of the form

θ|Y T ∼ N (θ̃T , ṼT ), (68)

where

θ̃T =
(∑

y2t−1 + τ−2
)−1∑

ytyt−1 (69)

ṼT =
(∑

y2t−1 + τ−2
)−1

(70)

3. Suppose the goal is to forecast yT+2 based on information up until time T , given by the sample
Y T . Show that under the loss function

L(yT+2, ŷT+2T ) = (yT+2 − ŷT+2|T )
2 (71)

where yT+2 is the actual value and ŷT+2|T is the predicted value, the optimal (minimizing
posterior expected loss) forecast is given by

ŷoptT+2|T = E[yT+2|Y T ]. (72)

4. Using the results from (ii), calculate the optimal two-step ahead predictor for the estimated
AR(1) model. Notice that

E[yT+2|Y T ] =

∫
E[yT+2|θ, Y T ]p(θ|Y T )dθ. (73)

5. Suppose that data are generated from an AR(2) model

yt = ϕ1yt−1 + ϕ2yt−2 + ϵt. (74)

but the Bayesian bases his/her analysis on an AR(1) model. What happens to the mean and
variance of the posterior distribution in (iv) as T −→ ∞.
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Problem 2

Consider the following two models for the time series Y T = {y1, . . . , yT }:

M0 : yt = ut, ut ∼ iidN (0, 1), (75)

M1 : yt = θyt−1 + ut, ut ∼ iidN (0, 1). (76)

You may assume that y0 = 0.

1. Derive the joint probability density function (pdf) for Y T conditional on the initial observation
and the model parameters for M0 and M1.

2. Define the likelihood ratio statistic

LRT = 2 ln
maxθ∈Θ p(Y T |θ,M1)

p(Y T |M0)
, (77)

where p(Y T |M0) and p(Y T |θ,M1) denote the pdf’s derived in (i). Derive the limit distribution
of LRT under the assumption that data have been generated from M0.

Now consider the following prior distribution for θ in M1: θ ∼ N (0, τ2).

1. Derive the posterior distribution of θ under conditional on M1.

2. Derive the marginal data density for model M1

p(Y T |M1) =

∫
p(Y T |θ,M1)p(θ)dθ. (78)

3. Suppose the prior probabilities for models M0 and M1 are equal to 0.5. Find an expression
in terms of y1, . . . , yT for the log posterior odds of M1 versus M0:

LPOT = ln
P{M1|Y T }
{M0|Y T }

.

4. Suppose that Y T has been generated from M0. What happens to to LPOT as T −→ ∞.
Compare the asymptotic behavior of LPOT and LRT and discuss some of the differences
between Bayesian and classical testing.
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