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Last time we talked about the regression model,

yt = x′tβ + ut, ut ∼ iidN(0, σ2). (1)

We focused on the “new” parameter, σ2, and talked about how to construct a prior for it. We then
described a few different parameterizations of the prior. Finally, we derived the posterior for σ2,
under the likelihood defined in (1) with the restriction that β = 0. Today we’re going to focus on
jointly estimating the two parameters of our regression model: (β, σ2). We’ll refer to this vector of
parameters as θ. Also, let’s make it explicit that β is a k×1 vector; that is, there are k explanatory
variables in our regression.

First, we’ll introduce a new distribution defined jointly over (β, σ2), which we’ll use as our prior
distribution. To do so, we’ll factorize the prior as follows:

p(β, σ2) = p(β|σ2)p(σ2).

(β, σ2) follows a normal inverse gamma distribution with parameters (ν0, s
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0, µ0, V0) if σ2 follows

an inverse gamma distribution with parameters (ν0, s
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distribution with mean µ0 and variance σ2V0. Use the above factorization, the joint density of the
distribution can be written as:
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Problem 1: Write two scripts is python or R that: (1) generate draws from this distribution and
(2) evaluate the log pdf of the distribution, given some values.

#test

Note that in our formulation, we’ve constructed β conditional on σ2. It’s also interesting to examine
the marginal distribution of β,

p(β) =

∫
p(β, σ2)dσ2.

Problem 2: Derive the marginal distribution of β by integrating out σ2. Validate your derivation
by comparing a density estimated from the simulations in Problem 1 to the analytic formulation.
What is the name of this distribution?
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#test

The normal inverse gamma prior is convenient because it’s conjugate for the normal regression
model in (1). This means that the posterior distribution of the parameters is also a normal inverse
gamma distribution.
Problem 3: Derive the posterior distribution for the model in (1). Use a normal inverse gamma
prior with parameters (ν0, s

2
0, µ0, V0). For notation, let X = [x1, . . . , xT ]

′ and Y = [y1, . . . , yT ]
′.

#test

Let’s run a Bayesian regression! The data in the table below come from T. Haavelmo, “Methods of
Measuring the Marginal Propensity to Consume,” J. Am. Statist. Assoc, 42, p. 88 (1947). Using
(1) to relate income, yt, to a constant and “autonomous” investment, the independent variable. The
coefficient associated with investment is termed the investment multiplier.
Problem 4: Pick a parameterization of the normal inverse gamma distribution that is not very
informative; that is, it doesn’t impose strong beliefs about the plausible values one the coefficients.
Let’s center the prior for β at µ0 = 0, and for the inverse gamma portion set s20 = 600. What
should you do with ν0 and V0? Construct the posterior distribution for β and σ2. What is the
posterior mean of β2, the coefficient associated with investment? What happens when you increase
the “strength” of the prior, by increasing ν0 or decreasing V0?

Table 1: Haavelmo’s Data on Income and Investment
Year Income Investment
1922 433 39
1923 483 60
1924 479 42
1925 486 52
1926 494 47
1927 498 51
1928 511 45
1929 534 60
1930 478 39
1931 440 41
1932 372 22
1933 381 17
1934 419 27
1935 449 33
1936 511 48
1937 520 51
1938 477 33
1939 517 46
1940 548 54
1941 629 100

2


