
Some Notes on the Kalman Filter

Ed Herbst

March 14, 2025

State space models form a very general class of models that encompass many of the specifications
that we encountered earlier. VARMA models, linearized DSGE models, and more can be written in
state space form. State space models are particularly popular at the FRB. For example, the models
in the r∗ suite can all be written in state space form. (setq line-spacing 0) A state space model can
be described by two different equations: a measurement equation that relates an unobservable state
vector st to the observables yt, and a transition equation that describes the evolution of the state
vector st. For now, we’ll restrict attention to the case in which both of these equations are linear.
Measurement. The measurement equation is of the form

yt = Dt|t−1 + Zt|t−1st + ηt, t = 1, . . . , T (1)

where yt is an ny × 1 vector of observables, st is an ns × 1 vector of state variables, Zt|t−1 is an
ny × ns vector, Dt|t−1 is a ny × 1 vector, and ηt are innovations (or often “measurement errors”)
with mean zero and Et−1[ηtη

′
t] = Ht|t−1.

• The matrices Zt|t−1, Dt|t−1, and Ht|t−1 are in many applications constant (“time-invariant.”)

• However, it is sufficient that they are predetermined at t − 1. They could be functions of
yt−1, yt−2,

• To simplify the notation, we will denote them by Zt, Dt, and Ht, respectively.

Transition. The transition equation is of the form

st = Ct|t−1 + Tt|t−1st−1 +Rt|t−1ϵt (2)

where Rt is ns×nϵ, and ϵ is a nϵ×1 vector of innovations with mean zero and variance Et|t−1[ϵtϵ
′
t] =

Qt|t−1.

• The assumption that st evolves according to an VAR(1) process is not very restrictive, since
it could be the companion form to a higher order VAR process.

• It is furthermore assumed that (i) expectation and variance of the initial state vector are given
by E[s0] = A0 and V[s0] = P0;

• ηt and ϵt are uncorrelated with each other in all time periods , and uncorrelated with the
initial state. This assumption is not really necessary, but it simplies things considerable.

1

The collection of matrices in () and () define the state space system. For that reason, they are often
referred to as the “system matrices.”
Example. Consider the ARMA(1,1) model of the form

yt = ϕyt−1 + ϵt + θϵt−1 ϵt ∼ iidN (0, σ2) (3)

The model can be rewritten in state space form

yt = [1 θ]

[
ϵt
ϵt−1

]
+ ϕyt−1 (4)[

ϵt
ϵt−1

]
=

[
0 0

1 0

][
ϵt−1

ϵt−2

]
+

[
ηt
0

]
(5)

where ϵt ∼ iidN (0, σ2). Thus, the state vector is composed of st = [ϵt, ϵt−1]
′ and Dt = ρyt−1. This

construction is not unique. We could also write the model as:

yt = [1 0]

[
yt
ϵt

]
(6)[

yt
ϵt

]
=

[
ϕ θ

0 0

][
yt−1

ϵt−1

]
+

[
1

1

]
ϵt. (7)

Notice in this formulation the state vector st = [yt, ϵt] is partially observed. So it’s not true, strictly
speaking, that the entire st vector must be unobserved. □.

If the system matrices Dt, Zt, Ht, Ct, Tt, Rt, Qt are non-stochastic and predetermined, then the
system is linear and yt can be expressed as a function of present and past ηt’s and ϵt’s. We’ve done
some work on linear systems previously (VARs), so the natural next step is to expand our toolkit
to do the kinds of things we liked to do with VARs:

• Calculate predictions yt|Y t−1, where Y t−1 = [yt−1, . . . , y1],

• Obtain a likelihood function

p(Y T |{Zt, Dt, Ht, Tt, Ct, Rt, Qt}), (8)

• and, something we didn’t do with VARs, back out a sequence{
p(st|Y t, {Zt, Dt, Ht, Tt, Ct, Rt, Qt})

}T
t=1

.

Now, if the state vector was observed, it would be easy to combine equation () and () to obtain
a VAR jointly in [yt, st]. Thus, it would be straightforward to obtain the (perhaps conditional)
likelihood:

p(Y T , ST |{Zt, Dt, Ht, Tt, Ct, Rt, Qt}).

But life is hard, and we don’t get to observe ST . We need to compute the likelihood for the data
we have, i.e., the likelihood in (). We have to marginalize out ST . It turns out that there is an

2

algorithm that does this, and fulfills the three desiderata above. The algorithm is called the Kalman
Filter and was originally adopted from the engineering literature.

The Kalman Filter

For this presentation of the Kalman filter, we’re going to assume that the system matrices are
time invariant, that is, they do not depend on t. So we drop these subscripts from our notation.
Furthermore, we’re going to collect them in the vector θ = [C, T,R,Q,D,Z,H], where the vec

operator is being implicitly applied to each matrix.
We’re also going to assume that the innovations ηt and ϵt are normally distributed. We need to

this to obtain an exact likelihood, although the Kalman filter can be used to obtain an optimal—
in terms of MSE—predictor yt+h given Y T for h ≥ 1 using linear projections, regardless of the
parametric distributions for ηt and ϵt. The chapter on state space models in cite:Hamilton derives
this. In this case the likelihood calculation delivers a quasi-likelihood.

With our normality assumption, the derivation of the Kalman filter has a natural Bayesian
interpretation. Before we proceed, we’re going to state some results about multivariate normal
distributions, which will help later on.
Lemma. Let (x′, y′)′ be jointly normal with

µ =

[
µx

µy

]
and Σ =

[
Σxx Σxy

Σyx Σyy

]

Then the pdf(x|y) is multivariate normal with

µx|y = µx +ΣxyΣ
−1
yy (y − µy) (9)

Σxx|y = Σxx − ΣxyΣ
−1
yy Σyx (10)

Note that the converse is not necessarily true. □
In both theory and practice, the Kalman filter proceeds recursively, using the natural prior-

posterior sequencing, after an initialization.
Initialization. We’re going to start at period t = 0, that is, the period before we first observe y. We
assume that s0 is normally distributed:

s0|θ ∼ N (A0, P0) . (11)

Importantly, we conceptualize this distribution as prior distribution. We’ll discuss possible ways to
select A0 and P0 in a bit.
Prediction. We can combine our prior distribution for s0 with the state transition equation (). Since
s0 is normally distributed and ϵ1 is also normally distributed (and independent of s0), s1 is also
normally distributed,

s1|θ ∼ N
(
A1|0, P1|0

)
where

A1|0 = C + TA0 and P1|0 = TP0T
′ +RQR′.

3

Note that this is the unconditional distribution of s1, a prior distribution for s1 before seeing y1.
We write the mean A1|0 and P1|0 as conditional on time t = 0.

Next consider the prediction of y1. The conditional distribution of y1 is of the form

y1|s1, θ ∼ N (D + Zs1, H) (12)

Since s1 ∼ N (A1|0, P1|0), we can deduce that the marginal distribution of y1 is of the form

y1|θ ∼ N (ŷ1|0, F1|0) (13)

where

ŷ1|0 = D + ZA1|0 and F1|0 = ZP1|0Z
′ +H.

Here we’ve been explicit in going s0 → s1 → y1.
Updating. Another way to see this is to rewrite the observation equation () in terms of st−1 and ϵt.
If s0 is normally distributed as above it’s easy to see that s1 and y1 are jointly normally distributed
with the marginal and conditional distributions mentioned above. We have:

s1 = C + Ts0 +Rϵt (14)

y1 = D + ZTs0 + Zϵt + ηt. (15)

Direct calculation yields: [
s1
y1

] ∣∣∣∣θ ∼ N

([
A1|0
ŷ1|0

]
,

[
P1|0 P1|0Z

′

ZP1|0 F1|0

])
. (16)

Consider the third goal of toolbox: delivering p(s1|y1, θ). Well, we can get that easily using the
formula for the conditional normal distribution:

s1|y1 ∼ N
(
A1|0 + P1|0Z

′F−1
1|0
(
y1 − ŷ1|0

)
, P1|0 − P1|0Z

′F−1
1|0ZP1|0

)
. (17)

Note that we could have instead obtained this using:

p(s1|y1, θ) ∝ p(y1|s1, θ)p(s1|θ), (18)

i.e., our good friend Bayes rule! Note the conjugacy (normal-normal) likelihood-prior relationship
yields a normally distributed posterior. Finally, let’s call give our updated state mean and variance:

A1 = A1|0 + P1|0Z
′F−1

1|0
(
y1 − ŷ1|0

)
and P1 = P1|0 − P1|0Z

′F−1
1|0ZP1|0. (19)

Generalization. Now, with the distribution form s1|y1, θ, we’re back where we started! So all we have
to do is construct s2|y1, θ and y2|s2, y1, θ in an identical fashion as above, and so on for t = 2, . . . , T .
We can summarize the recursions:

1. Initialization. Set s0 ∼ N(A0, P0).

4

2. Recursions. For t = 1, . . . , T :

state prediction : At|t−1 = C + TAt−1 and Pt|t−1 = TPt−1T
′ +RQR′. (20)

observation prediction : ŷt|t−1 = D + ZAt|t−1 and Ft|t−1 = ZPt|t−1Z
′ +H. (21)

state update : At = At|t−1 + Pt|t−1Z
′F−1

t|t−1

(
yt − ŷt|t−1

)
and

Pt = Pt|t−1 − Pt|t−1Z
′F−1

t|t−1ZPt|t−1. (22)

Likelihood function. We can define the one-step ahead forecast error

νt = yt − ŷt|t−1 = Z(st −At|t−1) + ηt. (23)

The likelihood function is given by

p(Y T |θ) =

T∏
t=1

p(yt|Y t−1, θ)

= (2π)−nyT/2

(
T∏
t=1

|Ft|t−1|

)−1/2

× exp

{
−1

2

T∑
t=1

νtF
−1
t|t−1ν

′
t

}
(24)

This representation of the likelihood function is often called prediction error form, because it
is based on the recursive prediction one-step ahead prediction errors νt. □

Discussion

Initialization. First, on the initialization step, if the system-matrices are time-invariant and the
process for st is stationary (i.e., all the eigenvalues of T are less than one in magnitude), it might
make sense to initialize the Kalman filter from the invariant distribution, i.e., we have A0 and P0

such that
A0 = (Ins − T)−1C and P0 = TP0T

′ +RQR′.

If the system is not too big, you can solve for P0 directly using the vec operator:

vec(P0) =
(
In2

s
− (T ′ ⊗ T)

)−1
RQR′.

Otherwise, there are algorithms available for computing P0 reliably and quickly.
If the system is not stationary, it’s common practice to set the variance of P0 be extremely large,

like 1000× Ins .
Kalman Gain. In (), the matrix that maps the prediction errors, νt, into the state revision is
important enough to warrant it’s own name: the Kalman Gain. The Kalman Gain,

Kt = Pt|t−1ZF−1
t|t−1,

is an ns × ny matrix that maps the “surprises” (forecast errors) in the observed data to changes
in our beliefs about the underlying unobserved states. Essentially, the gain tells us how we learn
about the states from the data.

5

Time-varying system matrices and missing data. The Kalman filter recursions in (), (), and ()
are valid if the system matrices are time-varying (but pre-determined.) In practice, it is simply
a matter of adding the relevant subscripts onto the system matrices. An important case of time-
varying system matrices is when they are constant except for the fact that some of the observations
are missing; i.e, for some t, at least one element of yt is missing. In this case, we simply modify
the observation equation ()—and hence, () and ()—in order to account for the fact that we observe
fewer series at some periods. Suppose in period t we observe nyt , which is less than or equal
to ny. Define the nyt × ny select matrix Mt, to be the matrix whose columns are comprised of
{ei : ith series is observed}, where ei is the ny × 1 vector with a one in the ith position and zeros
elsewhere. Then,

Dt = MtD, Zt = MtZ, and Ht = MtHM ′
t . (25)

The ability to handle missing data is an extremely powerful feature of the Kalman filter, as it allows
us to both handle estimating models with missing data, and make inference about the missing data
itself. More on this later. Most programmed Kalman filter routines can handle missing data without
an modification of the system matrices on the part of the user. Simply code your missing data as
nan. Finally, note that the likelihood calculation in () needs to be modified (i.e., ny needs to be
replaced by nyt .) Again, preprogrammed routines should handle this without user intervention.
“Steady-state” Kalman filter. Suppose the system matrices are constant. If we combine (), () () for
the state variance, we obtain

Pt+1|t = TPt|t−1T
′ +RQR− TPt|t−1Z

′(ZPt|t−1Z
′ +H)−1ZPt|t−1T

′ (26)

with P0|−1 = P0. This equation is known as the matrix Riccati recursion, a discrete time analogue to
the popular set of ODEs. Under some regularity conditions, as t gets sufficiently large, Pt+1|t → P̄ ,
i.e., there is an invariant solution to the Riccati equation. Some people refer to this as the “steady-
state” prediction variance (and correspondingly, the “steady-state” Kalman gain.) It can be useful
in computation as well: after a sufficiently amount of time, one does not need to continue to update
Pt|t−1, which is the typically the costliest part of evaluating the Kalman filter. Note this also makes
clear that the variances in the Kalman filter to not depend on the observed data.
Caution. Some authors adopt a slightly different timing convention with the Kalman Filter; specifi-
cally, cite:DurbinKoopman2001. The initialization of the filter changes slightly. It’s all very tedious.

Kalman Smoothing

Note that the Kalman filter is a filter : it delivers the sequence of smoothed distribution {st|Y t}Tt=1,
which since they are normal, are simply described by the sequence {At, Pt}Tt=1. Sometimes, we
interested in the smoothed distributions, {st|Y T }Tt=1, that is distributions of the unobserved states
conditional on all of the data. These distributions are also normally distributed, and can be found
another recursive algorithm known as the Kalman smoother.

The Kalman smoother is more or less the Kalman filter in reverse. Let’s define

At|T = E[st|Y T] and Pt|T = V[St|Y T].

6

The Kalman smoother delivers to the sequence {At|T , Pt|T }Tt=1. Clearly, AT |T = AT and PT |T = PT .
Consider next computing the smoothed distribution at time T − 1. Consider the joint distribution
of the form

sT−1

sT
yT

 ∣∣∣∣Y T−1, θ ∼ N

 AT−1

AT |T−1

ŷT |T−1

 ,

 PT−1 PT−1T
′ PT−1T

′Z ′

TPT−1 PT |T−1 PT |T−1Z
′

ZTPT−1 ZPT |T−1 FT |T−1

 . (27)

Thus, the mean of sT−1|Y T , θ is given by:

AT−1|T = AT−1 + PT−1T
′Z ′F−1

T |T−1(yT − ŷT |T−1)

= AT−1 + PT−1T
′P−1

T |T−1︸ ︷︷ ︸
JT−1

(AT −AT |T−1) using (22). (28)

The variance is similarly calculated as:

PT−1|T = PT−1 − PT−1T
′Z ′F−1

T |T−1ZTPT−1

= PT−1 − JT−1(PT − PT |T−1)J
′
T−1 using (22). (29)

To extend this to T − 2 and so on simply modify (27). Note that the procedure sketched here can
be numerically unstable, most packaged software will take care of this.

Drawing from the Smoothed Distribution

Often times one wants to simulate from the smoothed distribution. Conceptually this is straight-
forward, but note that our sequence of smoothed distributions we derived above does not include
the joint distribution of the sts. Drawing from the joint distribution ST |Y T is known as simu-
lation smoothing. Doing this quickly and accurately has been a topic of research of the past few
decades. cite:fruhwirth1994data and cite:CaKohn94 independently developed methods of drawing
samples of ST |Y T using a recursive technique consisting of first sampling sT |Y T and then sampling
ST−1|Y T , sT and so on. Importance computational improvements were made first by cite:Jong1995
and then cite:Durbin2002.

In what follows, I’ll discuss the simulation smoothing method of . This algorithm simulates from
ST |Y T by simulating from the structural shocks, ϵt, measurement errors, ηt, and initial condition
s0. With these simulations in hand, one can construct a draw from ST |Y T through recursive
substitution. In a nutshell

• Let wt = [η′t, ϵ
′
t]
′. Thus, our disturbances are collected in the vector [s0,W

T ′]′. Uncondition-
ally, this vector is distributed normally with mean [A0,01xnynϵ]

′ and variance diag([P0, H1, Q1, . . . ,HT , QT]).
Simulate from this distribution, and call it w+. Using this simulation, construct a counterfac-
tual observations series Y +T

• Next, use the Kalman smoother to compute [Â, Ŵ+T] = E[w+|Y +]

E[W T |Y T]

7

• Note, if x and y are normally distributed, then drawing from x and y and computing x −
Σx,yΣ

−1
y (y − µy) is a draw from x|y.

Consider first ϵt|Y T . It’s easy to see that this is normally distributed with

µ = QTR
′
TZ

′
TF

−1
T νT and σ2 = QT −QTR

′
TZ

′
TF

−1
T ZTRTQT

Next consider (ϵt−1, yT)|Y T−1 again this normally distributed with:

µ =

[
QT−1R

′
T−1Z

′
T−1F

−1
T−1νT−1

ŷT

]
and Σ =

[
QT−1 −QT−1R

′
T−1Z

′
T−1F

−1
T−1ZT−1RT−1QT−1

Z FT

]

Let’s also recall that sT−2, ϵT−1, yt−1|Y T−2 is normally distributed with

µ = (aT−2|T−2, 0, ŷT−1|T−2) (30)

V =

 PT−2|T−2 0 PT−2|T−2T
′
T−1Z

′
T−1

0 QT−1 QT−1R
′
T−−1Z

′
T−1

ZT−1TT−1PT−2|T−2 ZT−1RT−1QT−1 FT−11

 (31)

Thus sT−2, ϵT−1|Y T−1

µ = (QT−1R
′
T−−1Z

′
T−1F

−1
T−1νT−1, aT−2|T−2) (32)

V =

[
PT−2|T−2 − PT−2|T−2T

′
T−1Z

′
T−1F

−1
T−1ZT−1TT−1PT−2|T−2 −PT−2|T−2T

′
T−1Z

′
T−1F

−1
T−1ZT−1RT−1QT−1

−QT−1R
′
T−−1Z

′
T−1F

−1
T−1ZT−1TT−1PT−2|T−2 QT−1 −QT−1R

′
T−−1Z

′
T−1F

−1
T−1ZT−1RT−1QT−1

]
(33)

Note that we can write: yt − ŷt|t−1 = ZTTT (TT−1sT−2 +Rt−1ϵt−1)− ZTTT (TT−1sT−2 +Rt−1ϵt−1)

An Example: GDP+

Here I’m going to through a simple state space model described in cite:Aruoba2016. Since GDP data
is inherently noisy, the authors use both income-side (GDPIt) and expenditure-side (GDPEt) data
on GDP growth to infer the true (unobserved) growth rate, GDPt. The authors posit that the true
growth rate follows an AR(1):

GDPt = µ(1− ρ) + ρGDPt−1 + ϵt, ϵt ∼ IIDN(0, σ2). (34)

An that both income- and expenditure-side estimates are mismeasured versions of this:

GDPEt

GDPIt

∣∣∣∣GDPt ∼ IIDN

([
GDPt

GDPt

]
,

[
σ2
E 0

0 σ2
I

])
(35)

8

We can cast this into state space form with ny = 2 and ns = nϵ = 1. We have

C = µ(1− ρ), T = ρ, R = 1, and Q = σ2,

D =

[
0

0

]
, Z =

[
1

1

]
, and H =

[
σ2
E 0

0 σ2
I

]
. (36)

Here’s a look at the data:

We can use the Kalman filter to maximize the likelihood function, since we haven’t quite worked
out how to elicit the posterior of this model just yet.

2025-03-14 09:49:21,192 - dsge.parser - INFO - Reading YAML from file: /home/eherbst/Dropbox/teaching/econ-616-fall-2017/problem-sets/gdp_plus.yaml
2025-03-14 09:49:21,201 - dsge.parser - INFO - Detected model type: dsge
2025-03-14 09:49:21,251 - dsge.dsge.core - INFO - Validating model leads and lags
2025-03-14 09:49:21,255 - dsge.dsge.core - INFO - DSGE model 'gdp_plus' creation complete with 1 variables and 1 equations
2025-03-14 09:49:21,256 - dsge.dsge.core - INFO - Initializing DSGE model
2025-03-14 09:49:21,257 - dsge.dsge.core - INFO - DSGE model initialized with 1 variables and 1 equations
Initial likelihood: -4358.774970922921
Maximized Likelihood: -364.1097251748766
{'rho': 0.5009065968115182, 'mu': 0.3961715677832375, 'sige': 0.3025985769461368, 'sigi': 0.3991749378400256, 'sig': 0.6430967807627881}

Next, let’s compute the standard errors for the estimates, computed using the hessian of the log
likelihood. We these point estimates, we can use the kalman filter to extract {At}Tt=1, the filtered
means of the “true” GDP series. We’ll plot them along with the observables, and the simple average
of expenditure-side and income-side GDP estimates.

9

:RESULTS:
We can also compute the filtered states of the other variables, and plot them.

Let’s do the same thing, but for the annual averages of GDP.

10

11

