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Lecture Objective: Introduce basic concepts from time series: (covariance)
stationarity, ARMA processes, Wold representation.

Additional Readings: For an overview, the first three chapters of Hamilton
(1994) are a good place to start. More technically detailed information—included the
Hilbert space machinery used in modern analysis—can be found Chapters 2 and 3 of
Brockwell and Davis (1987). I’ve personally found the first four chapters of Cochrane
(2005) helpful for intuition. Articles referenced in these notes are referenced in the
bibliography. And there’s always ChatGPT, though caveat emptor.

Let’s start with a random variable Y and let’s assume that it has finite mean µ and
variance σ2. The paradigm you are probably used to in statistics is to have many realizations
of the same random variable. What’s more, each of these realizations are independent of one
another. We could write this as:

yi
i.i.d∼ Y, i = 1, . . . , n.

where “iid” means “independent and identically distributed.” As econometricians, given the
sample {yi}ni=1, we might be interested making inference about the characeristics of Y , say
its mean or variance to understand an economic phenomenom or to make predictions about
yis yet to be realized. There are two important pieces of statistical theory that enable use
sample information learn about population parameters. Define

yn =
1

n

n∑
i=1

yi.

The Weak Law of Large Numbers (WLLN) (see, e.g., Casella and Berger (2002) Theorem
5.2.1) states that

yn
p−→ µ as n → ∞,
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where p−→ denotes convergence in probability. The WLLN says as we collect more observations
y1, y2, . . . ,, the “noise” from any one observation averages out. If each yi has mean µ, then
the sample average overlineyn eventually reflects the true underlying mean. In practice,
this tells us that we can estimate µ by overlineyn, and our estimate will improve with more
data. We can infer the precision of our estimate by looking at appropriately scaled versions
of yn. Specifically, the Lindeberg–Lévy Central Limit Theorem (CLT) (see, e.g., Casella and
Berger, Theorem 5.5.1) says:

√
n
(
yn − µ

) d−→ N (0, σ2),

where d−→ denotes convergence in distribution. Regardless of the original distribution of Y
(as long as it has finite mean and variance), yn behaves “like” a normal random variable
when n is large. The larger the sample size, the more yn clusters around µ in a bell-shaped
manner. This gives us a basis for constructing confidence interval and hypothesis testing.
What’s so special about time series? This paradigm gets complicated when we start
to study time series. The first “i” in “i.i.d.”—independent—is no longer true, and the second
“i” might not be either. The random variables Yt will exhibit dependence across time—now
using a t subscript to the make this explicit. This means that we can no longer rely on
the above theorems to guide our inference. And the whole enterprise is somewhat called
into question: if the Yt are no longer the same distribution, can we use realizations yt from
different t to learn about some population characteristics (and what do those even look like?)
Put differently, can we use the past to learn about the future? In these lecture notes, we’ll
try to sketch out some answers to these questions and introduce the basics of time series
analysis.

Some practical details also differentiate macroeconomic time series from their microeco-
nomic cousins. The sample sizes of aggregate macroeconomic time series are often very short.
There’s been only 282 quarterly observations of GDP from 1954 until the end of 2024. And
as we’ll see shortly, it’s best to think of this entire trajectory of GDP as a single realization
of a time series. This yields a lot of complications in itself: how good are the large sample
approximations, anyway? Given these limitations, time series in macroeconomics has mostly
focused on parametric models, and we’ll follow the literature in these lecture notes.

1 An Introduction To Time Series Models

A time series is a family of random variables indexed by time {Yt, t ∈ T} defined on a
probability space (Ω,F , P ), where a σ-algebra F is on an outcome space Ω, and P is a
probability measure. In practive “time series” is used to mean both the random variables
and their realizations. For these notes, we’ll require the index set {0,±1,±2, . . .}, that is,
we’ll focus on discrete-valued time series rather than continuous ones. The index set could
be finite or (countably) infinite.
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A single (time t) realization from this time series is denoted yt and an entire trajectory
denoted {yt}t1t=to , with t0 = 1 and t1 = T most commonly used. We will sometimes refer
to this set as (for instance) Y1:T , abusing the above notation a bit, or simply Y when the
context is clear. Note that, excepting theoretical analysis, the index set of the realized time
series will always be finite.
Some examples of time series models.

Example 1.1. Let β0, β1 ∈ R be constants and let ϵt
i.i.d.∼ N (0, σ2) for t = 1, . . . , T . Then

the deterministic trend model is generated by

yt = β0 + β1t+ ϵt, t = 1, . . . T. (1)

Example 1.2. Let |ϕ1| < 1 and ϵt
i.i.d.∼ N (0, σ2) for t = 1, . . . , T . The first order autore-

gressive model is given by:

yt = ϕ1yt−1 + ϵt. (2)

Example 1.3. Let ϵ1 and ϵ2 be independently drawn from a N(0, σ2) random variable and
let ω ∈ [0, 2π). Then the cyclical model is given by:

yt = ϵ1 cos(ωt) + ϵ2 sin(ωt). (3)

Figure 1: Three Time Series

Figure 1 illustrates three different time series models. The deterministic trend model
exhibit random disturbances around a linear upward trend determined by the constants β0
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and β1. The first order autoregressive time series model is one that depends on its past value,
leading to persistence (random) fluctuations around zero. The cyclical model has periodic
(deterministic) fluctuations around zero.

1.1 Characterizing Time Series (up to a point)

Characterizing a time series is a challenging task, as it involves describing an entire family of
random variables. To make this more tractable, we often focus on the first two moments: the
mean and the variance (or the covariance structure). Moments play a key role in describing
the properties of random variables, and the first two are particularly significant. In the
case of normally distributed random variables, these two moments completely define the
distribution, making them especially useful in time series analysis.

To start, let’s define the mean of our time series. We’ll denote it by µt = E[Yt], which
captures the expected value of the random variable at each time t. Beyond the mean, random
variables typically have covariance, but in the context of time series, we’re particularly
interested in how this covariance behaves over time. This brings us to the concept of the
autocovariance function, which measures the relationship between the values of a time series
at different time points. For a time series {Yt} the autocovariance function is defined as:

γt(τ) = E [(Yt − EYt)(Yt+τ − EYt+τ )
′]

where τ is the time lag and the subscript t highlights that the autocovariance may depend
on the specific time point.

Example 1.4. Let the time series Yt be defined as:

Yt =
√
t · ϵt + α

√
t · ϵt−1,

where ϵt ∼ N (0, σ2) are independent, identically distributed noise terms and α ∈ R.
The mean of this time series is given by µt = 0 for all t. The autocovariance function is

given by:

γt(τ) =


tσ2(1 + α2), if τ = 0,

ασ2
√
t(t+ 1), if |τ | = 1,

0, if |τ | > 1.

.

If the autocovariance function γt(τ) depends on both t and τ , as in Example 1.4, then
the time series exhibits temporal heterogeneity. The relationship between Yt and Yt+τ is
determined not only by τ , the “distance” between the elements in the series, but by the
absolute index. In the example, if t′ > t, then |γt′(1)| > |γt(1)|, that is, the magnitude of
the first order autocovariance increasing in time t. A series exhibiting such behavior is said
to be nonstationary.
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We’ll begin our analysis by considering only time series that do not exhibit this kind of
behavior.

Definition 1.1: Covariance Stationarity

A time series is covariance stationary if

1. E [Y 2
t ] = σ2 < ∞ for all t ∈ T .

2. E [Yt] = µ for all t ∈ T .
3. γt(τ) = γ(τ) for all t, t+ τ ∈ T .

Covariance stationary processes have an element of “sameness” because some of their
key statistical properties do not change over time. This consistency makes them important
for both theoretical and practical reasons: they simplify modeling and forecasting, provide
tractable analytical results, and allow the use of powerful statistical tools. Many economic
and financial models require covariance stationarity to ensure meaningful and interpretable
relationships between variables.

We can say a bit more about the autocovariance function. First, the autocovariance
function is symmetric in the sense that γ(τ) = γ(−τ). Second the τth autocovariance is
bounded by the covariance (or 0th order autocovariance) γt(0). To see this, use the Cauchy-
Schwarz inequality:

∣∣γ(τ)∣∣ = ∣∣∣E[(Yt − E[Yt])(Yt+τ − E[Yt+τ ])
′]∣∣∣ ≤

√
E
[
|Yt − E[Yt]|2

]
E
[
|Yt+τ − E[Yt+τ ]|2

]
=
√

γ(0)γ(0) = γ(0). (4)

Thus in a covariance-stationary process, the autocovariance function “behaves like a normal
covariance” in the sense that it depends only on the lag and shares many of the same
properties you would expect from a static covariance structure. In particular, we can define
the autocorrelation function:

ρ(τ) =
γ(τ)

γ(0)
. (5)

We know |ρ(τ)| ≤ 1 for all τ , just like a regular covariance. Finally, a word about language:
covariance-stationarity is sometimes referred to as “weak stationarity” because this concept
only involves the invariance of the first two moments of the series. Confusingly, this is also
sometimes just referred to as “stationarity.” We’ll talk about another notion of stationarity
towards the end of the lecture.
Building covariance stationary processes. Covariance stationarity is an appealing prop-
erty for a time series. We’ll focus on the construction of such processes, starting from one
of the simplest covariance staitonary processes, called white noise. We’ll then build more
general covariance stationary processes by taking linear combinations of white noise. Later
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we’ll show that this set of linear processes can mimic any covariance stationary process using
the Wold Representation.

Definition 1.2: White Noise

A covariance stationary process {Zt} is called white noise if it satisfiess

1. E[Zt] = 0.
2. γ(0) = σ2.
3. γ(τ) = 0 for τ ̸= 0.

This process is sometimes written as Zt ∼ WN(0, σ2). They are kind of boring on their
own, but using them we can construct arbitrary stationary processes. A special case is given
by Zt

i.i.d.∼ N(0, σ2).

2 ARMA Processes

We’ll first start with a finite-order moving average process. This process is simply a (finite)
linear combination of white noise random variables:

Example 2.1. Let Zt ∼ WN(0, σ2) and let θj ∈ R for j = 1, . . . , q. The moving order
process of order q, or MA(q), is given by:

Yt = Zt + θ1Zt−1 + . . .+ θqZt−q. (6)

Before proceeding with the analysis of the MA(q) model, we’ll introduce some important
tools: the lag operator and lag polynomial. The lag operator L is a fundamental concept in
time series analysis. For any time series Yt, the lag operator is defined as:

LYt = Yt−1.

Applying the lag operator k times corresponds to LkYt = Yt−k. Informally, think of L as a
“backward shift” in time. The lag operator provides a compact way to express time series
processes like MA(q). A lag polynomial extends the idea of the lag operator by forming
polynomials in L. For example, consider a polynomial Θ(L) of degree q:

θ(L) = 1 + θ1L+ θ2L
2 + . . .+ θqL

q.

The MA(q) process can now be expressed succinctly as:

yt = θ(L)ϵt,
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where θ(L) is applied to ϵt to generate yt. For our purposes, lag polynomials behave similarly
to regular polynomials in algebra. Operations like addition, subtraction, multiplication, and
factorization apply in much the same way. For example:θ1(L) + θ2(L) combines terms as
usual and θ1(L)θ2(L) expands like a product of ordinary polynomials.

Now we’ll show that the MA(q) is always covariance stationary. Consider first the mean

E[Yt] = E[Zt] + θ1E[Zt−1] + . . .+ θqE[Zt−q] = 0.

This clearly does not depend on time. Next, consider the autocovariance, there are three
cases:

1. Case τ = 0: The autocovariance at lag 0, γ(0), is simply the variance of Yt:

γ(0) = Var(Yt) = Var (Zt + θ1Zt−1 + . . .+ θqZt−q) .

Since the Zt terms are white noise:

γ(0) = σ2
(
1 + θ21 + . . .+ θ2q

)
.

2. Case 0 < τ ≤ q: For 0 < τ ≤ q, the autocovariance at lag τ is:

γ(τ) = E [(Yt − E[Yt])(Yt+τ − E[Yt+τ ])] = E [Zt(θτZt−τ )] .

3. Case τ > q: For lags beyond q:

γ(τ) = 0, since there is no overlap of terms.

In sum, \[γ(τ) =

{
σ2(θτ + θ1θτ−1 + . . .+ θqθτ−q), 0 < τ ≤ q,

0, τ > q.
\] The autocovariances

depend solely on the lag τ . So the process is covariance stationary. The autocovariance is
zero beyond q lags.
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Definition 2.1: ARMA Processes

The processes {Yt} is said to be an ARMA( p, q/) process if {Yt} is stationary and if
it can be represented by the linear difference equation:

Yt = ϕ1Yt−1 + . . . ϕpYt−p + Zt + θ1Zt−1 + . . .+ θqZt−q

with {Zt} ∼ WN(0, σ2). Using the lag operator LXt = Xt−1 we can write:

ϕ(L)Yt = θ(L)Zt

where
ϕ(z) = 1− ϕ1z − . . . ϕpz

p and θ(z) = 1 + θ1z + . . .+ θqz
q.

Special cases:

1. AR(1) : Yt = ϕ1Yt−1 + Zt.
2. MA(1) : Yt = Zt + θ1Zt−1.
3. AR(p), MA(q), . . .

Figure 2: Autocovariance Functions of Two MA Processes

talk about these two ACFs
The plotted Autocovariance Functions (ACF) for the two Moving Average (MA) processes

demonstrate key characteristics of MA models, particularly in their decay patterns:

1. Yt = Zt + 0.8Zt−1: This is an MA(1) process. The ACF exhibits a spike at τ = 1, and
zero autocovariances for lags greater than one. This is typical for MA(1) processes,
where the correlation exists only between adjacent terms and disappears entirely be-
yond the first lag.
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2. Yt = Zt − 0.3Zt−1 + 0.6Zt−2: This is an MA(2) process. The ACF shows non-zero
values at τ = 1 and τ = 2, reflecting the two-period dependency introduced by the
lag terms. Beyond lag 2, the autocovariance becomes zero, as there is no third-period
memory or influence.

The plots highlight that MA(q) processes have autocovariance functions with non-zero
values up to the q-th lag, after which they drop to zero. This sharp cutoff is a defining feature
of moving average processes, contrasting with the slow decay often observed in autoregressive
(AR) processes.

2.1 AR(1)

Let’s return to Example 1.2, substituting the normal disturbances for more general white
noise:

Yt = ϕ1Yt−1 + Zt.

This can be viewed as a linear difference equation, and so we can solve backwards for yt as
a function zt via backwards substitution:

Yt = ϕ1(ϕ1Yt−2 + Zt−1) + Zt (7)

= Zt + ϕ1Zt−1 + ϕ2
1Zt−2 + . . . (8)

=
∞∑
j=0

ϕj
1Zt−j. (9)

How do we know whether this is a covariance stationary process? Things are a little bit
trickier than the MA case we have already studied: the AR(1) is a function of infinitely
many zs. To determine whether this AR(1) process is covariance stationary, we need to
examine if yt converges to a random variable given the infinite history of innovations. This
requires introducing the concept of mean square convergence.

A sequence of random variables {Yt} is said to converge in mean square to a random
variable Y if the expectation of the squared differences between them approaches zero as t

tends to infinity. Formally, this is expressed as:

E
[
(Yt − Y )2

]
→ 0 as t → ∞.

The idea of mean square convergence is closely related to the convergence of infinite series in
the deterministic setting, such as

∑∞
j=0 aj. To ensure the AR(1) process converges, and thus

can be considered covariance stationary, we verify that the infinite sum of the coefficients ϕj
1

multiplied by the white noise terms zt−j does not diverge.
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2.2 AR(2)

Consider now the AR(2) model:

Yt = ϕ1Yt−1 + ϕ2Yt−2 + Zt

Which means
ϕ(L)Yt = Zt, ϕ(z) = 1− ϕ1z − ϕ2z

2

Under what conditions can we invert ϕ(·)? Factoring the polynomial

1− ϕ1z − ϕ2z
2 = (1− λ1z)(1− λ2z)

Using the above theorem, if both |λ1| and |λ2| are less than one in length (they can be
complex!) we can apply the earlier logic succesively to obtain conditions for covariance
stationarity.

ϕ1

ϕ2ϕ2 = 1− ϕ1 ϕ2 = 1 + ϕ1

(0, 1)

(2,−1)(−2,−1)

Real roots(
∆ = ϕ2

1 + 4ϕ2 > 0
)

Complex roots(
∆ < 0

)

Note: λ1λ2 = −ϕ2 and λ1 + λ2 = ϕ1

[
Yt

Yt−1

]
=

[
ϕ1 ϕ2

1 0

] [
Yt−1

Yt−2

]
+

[
ϵt
0

]
(10)

Yt = FYt−1 + ϵt
F has eigenvalues λ which solve λ2 − ϕ1λ− ϕ2 = 0 Multiplying and using the symmetry

of the autocovariance function:

Yt : γ(0) = ϕ1γ(1) + ϕ2γ(2) + σ2 (11)

Yt−1 : γ(1) = ϕ1γ(0) + ϕ2γ(1) (12)

Yt−2 : γ(2) = ϕ1γ(1) + ϕ2γ(0) (13)
... (14)

Yt−h : γ(h) = ϕ1γ(h− 1) + ϕ2γ(h− 2) (15)
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We can solve for γ(0), γ(1), γ(2) using the first three equations:

γ(0) =
(1− ϕ2)σ

2

(1 + ϕ2)[(1− ϕ2)2 − ϕ2
1]

We can solve for the rest using the recursions.
Note pth order AR(1) have autocovariances / autocorrelations that follow the same pth

order difference equations.
Autocorrelations: call these Yule-Walker equations following the work of Yule (1927) and

Walker (1931).

3 Large Samples Revisited

We’ll show a weak law of large numbers and central limit theorem applies to this process using
the Beveridge and Nelson (1981) decomposition following Phillips and Ploberger (1996). For
the MA(q), setting q0 = 1 (a normalization), we can write θ(·) in a Taylor expansion-ish sort
of way:

θ(L) =

q∑
j=0

θjL
j,=

(
q∑

j=0

θj −
q∑

j=1

θj

)
+

(
q∑

j=1

θj −
q∑

j=2

θj

)
L

+

(
q∑

j=2

θj −
q∑

j=3

θj

)
L2 + . . .

=

q∑
j=0

θj +

(
q∑

j=1

θj

)
(L− 1) +

(
q∑

j=2

θj

)
(L2 − L) + . . .

= θ(1) + θ̂1(L− 1) + θ̂2L(L− 1) + . . .

= θ(1) + θ̂(L)(L− 1)

Here θ̂i =
∑q

j=i θj. Thus, we can write yt as

yt = θ(1)ϵt + θ̂(L)ϵt−1 − θ̂(L)ϵt

An average of yt cancels most of the second and third term . . .

1

T

T∑
t=1

yt =
1

T
θ(1)

T∑
t=1

ϵt +
1

T

(
θ̂(L)ϵ0 − θ̂(L)ϵT

)
We have

1√
T

(
θ̂(L)ϵ0 − θ̂(L)ϵT

)
→ 0.
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Then we can apply the WLLN / CLT for iid sequences (from the beginning of the lecture)
with Slutzky’s Theorem to deduce that

1

T

T∑
t=1

yt → 0 and
1√
T

T∑
t=1

yt → N(0, σ2θ(1)2).

Definition 3.1: Strict Stationarity

A time series is strictly stationary if for all t1, . . . , tk, k, h ∈ T if

Yt1 , . . . , Ytk ∼ Yt1+h, . . . , Ytk+h

We started this lecture with a refresher on the WLLN and CLT for sums of independent
random variables. As emphasized, time series data, however, are often not independent,
which necessitates the use of more advanced tools to analyze them effectively. And covariance
staionarity is in general not enough. We instead rely on /ergodicity/—a property that helps
us understand under what conditions time averages (i.e., averages calculated over time)
converge to population averages (i.e., expected values). This property is important make
inferential statements about the entire process based on a single, sufficiently long observation
path. Essentially, for ergodic processes, “time averages are equivalent to space averages.”

Definition 3.2: Ergodicity

A stationary process is classified as ergodic if, for any two bounded and measurable
functions f : Rk → R and g : Rl → R, the following condition holds:

lim
n→∞

|E [f(yt, . . . , yt+k)g(yt+n, . . . , yt+n+l)]|−|E [f(yt, . . . , yt+k)]| |E [g(yt+n, . . . , yt+n+l)]| = 0

At an intuitive level, a process is ergodic if the dependency between an event today and
an event at some future horizon diminishes as the time horizon increases. An important
result involving ergodic processes is the Ergodic Theorem. If {yt} is a strictly stationary
and ergodic process, and E[y1] < ∞, then the time average of the process converges to the
population average:

1

T

T∑
t=1

yt −→ E[y1]

This theorem assures us that time averages are consistent estimators of the population
mean for ergodic processes. The Central Limit Theorem for strictly stationary and ergodic
processes provides us with distributional results. If {yt} is such a process with E[y1] < ∞,
E[y21] < ∞, and σ̄2 = Var(T−1/2

∑
yt) → σ̄2 < ∞, then:

1√
T σ̄T

T∑
t=1

yt → N(0, 1)
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Here are some facts about ergodicity:

1. IID Sequences: Independent and identically distributed (IID) sequences are both
stationary and ergodic naturally.

2. Functions of Ergodic Processes: If {Yt} is strictly stationary and ergodic, and
f : R∞ → R is measurable, then the sequence Zt = f({Yt}) is also strictly stationary
and ergodic.

Consider an MA(∞) process with iid Gaussian white noise:

Yt =
∞∑
j=0

θjϵt−j,

∞∑
j=0

|θj| < ∞

For this process, {Yt}, {Y 2
t }, and {YtYt−h} are ergodic. This implies:

1

T

∞∑
t=0

Yt → E[Y0],
1

T

∞∑
t=0

Y 2
t → E[Y 2

0 ],
1

T

∞∑
t=0

YtYt−h → E[Y0Y−h]

A sequence {Zt} is termed a Martingale Difference Sequence (MDS) with respect to infor-
mation sets {Ft} if:

E[Zt|Ft−1] = 0 for all t

For a martingale difference sequence {Yt,Ft} satisfying E[|Yt|2r] < ∆ < ∞ for some r > 1,
and all t:

• The sample average ȲT = T−1
∑T

t=1 Yt
p−→ 0.

• If Var(
√
T ȲT ) = σ̄2

T → σ2 > 0, then:
√
T ȲT/σ̄T =⇒ N (0, 1)

Consider an investor making decisions between a stock with real return rt and a nominal
bond with guaranteed return Rt−1 subject to inflation risk πt. Assuming risk neutrality and
no arbitrage implies:

Et−1[rt] = Et−1[Rt−1 − πt]

This can be rewritten as:

0 = rt + πt −Rt−1 − ((rt − Et−1[rt]) + (πt − Et−1[πt]))︸ ︷︷ ︸
ηt

Here, ηt is an expectation error and, under rational expectations, Et−1[ηt] = 0. Therefore, ηt
forms a Martingale Difference Sequence, a fact we will explore further in Generalized Method
of Moments (GMM) estimation later in the course.
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4 The Trinity In Macro

Empirical Time Series: Log Real GDP, PCE Inflation, and Federal Funds Rate
Time series analysis is widely applied in macroeconomics to understand and forecast key

economic indicators. In this subsection, we’ll briefly discuss three such empirical time series:
the logarithm of real Gross Domestic Product (GDP), Personal Consumption Expenditures
(PCE) inflation, and the federal funds rate.

Figure 3: Three Macroeconomic Time Series
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