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Lecture Objective: Understand the basic of deterministic and stochastic trends. Give a
heuristic introduction to large sample theory.

Additional Readings: You can find background in Hamilton (1994) chapters 15-16
and Davidson and MacKinnon (2003). We’ll discuss the results in Nelson and Plosser (1982)
in some detail in the lecture.

A common method for analyzing macroeconomic time series is to decompose them into two distinct
components: trend and cycle. This approach allows economists to better understand the underlying
causes and effects of economic phenomenon at two different frequencies.

To illustrate, consider the example of real per capita GDP, denoted as gdpt, which represents the
economic output per individual in the United States. In this decomposition framework, we express
the natural logarithm of per capita GDP, yt, as the sum of its trend component and its fluctuations.
Mathematically, this can be represented as:

yt = ln gdpt = trendt + fluctuationst

In this equation, trendt might represent the “underlying” growth trajectory of the economy, while
fluctuationst are short-term variations around this trend, known as cyclical movements.

Separating trend from cycle is a difficult problem. Take the case of log GDP: while the total
data is compiled by the Bureau of Economic Analysis, the trend and cycle are not observed. In
general, we’ll need additional assumptions to identify these two components of a given time series.
In this lecture we’ll talk about deterministic and stochastic trends.

1 Deterministic Trends

For much of the 20th century, economists thought the underlying economic growth was largely
predictable with temporary business cycles. An example of this way of thinking was the large scale
econometric model of Tinbergen (1939), vol. 1.

∗Federal Reserve Board. This notes are based on ones I took as a TA for Frank Schorfheide’s Econ 706 class at
the University of Pennsylvania. All errors are my own.
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We’ll focus the linear deterministic trend model. Consider the model:

yt = β1 + β2t+ ut. (1)

Let’s make some assumptions on ut:

E[ut] = 0 and V[u2t ] = σ2.

Let’s further assume that ut is covariance stationary process. This kind of model has a few interesting
implications. Under our assumptions on ut, the future value yt+h, for a large horizon h, can be
predicted by extending the trend component:

Et[yt+h] ≈ β1 + β2(t+ h) as h becomes large.

Thus, the long-run forecast of yt becomes increasingly determined by the trend, and as ut converges
to its unconditional expectation. As h becomes large, the prediction error variance for yt+h is
bounded (it’s simply σ2.)

To implement this trend-cycle decomposition, we can estimate Equation 1. After estimating β1
and β2, we can obtain a decomposition:

yt = t̂rendt + ̂fluctuationst

= (β̂1 + β̂2t) + (yt − β̂1 − β̂2t). (2)

When yt is a logged variable, the coefficient β2 has the interpretation of an average growth rate.
Figure 1 shows the trend and fluctuations for United States annual log GNP from 1909-1970. The
data come from Nelson and Plosser (1982) and the coefficients are estimated using ordinary least
squares.

The estimated coefficient β̂2 is 0.031. This gives an average annual growth rate of about 3.1%
over the period from 1909 to 1970. This indicates that, despite the fluctuations typical of economic
activity, the underlying long-term trend was one of moderate growth. The Great Depression is
clearly visible in the cycle.
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Econometrics of Deterministic Trend Models. You’ve surely gone through the analysis of
this regression model for cross sectional data. Things are a bit different for the deterministic trend
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model. In fact, there are several difficulties associated with large sample analysis of the estimators
β̂1,T and β̂2,T . Taking xt = [1, t]′,

1. The matrix 1
T

∑
xtx

′
t does not converge to a non-singular matrix Q as the time trend grows

without bound.
2. In a time series model, the disturbances ut are in general dependent. This will change the

limiting distribution of quantities such as
√
T 1

T

∑
xtut.

3. If the ut’s are serially correlated, then the OLS estimator will in general be inefficient. More
sophisticated estimation techniques, like Generalized Least Squares (GLS), might be necessary
to achieve efficiency.

Roughly speaking, convergence rates tell us how fast we can learn the“true” value of a parameter in
a sampling experiment. In “standard” OLS then the variance of the β̂ converges to zero at rate 1/T .
This isn’t true for models with deterministic trends. Let’s look at the distributions of

√
T (β̂0 − β0)

and
√
T (β̂1 − β1).

Figure 1: Sampling Distribution of β̂

Figure 1 displays the sampling distributions for β̂0 and β̂1. The standardized estimate of β̂0
is stabilized at normal dstirbution. However the estimate

√
T (β̂1 − β1) is clearly degenerating to

a point mass at zero as T becomes large, as its variance is shrinnking rapidly. We’ll analysis this
asymptotic result now.

We’ll begin with some algebraic identities that will be helpful.

T∑
t=1

1 = T,

T∑
t=1

t =
T (T + 1)

2
, and

T∑
t=1

t2 =
T (T + 1)(2T + 1)

6
.
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Using these identitites, it’s easy to see that the matrix

1

T

∑
xtx

′
t =

1

T

( ∑
1

∑
t∑

t
∑

t2

)

does not converge at T becomes large. On the the hand

1

T 3

∑
xtx

′
t −→

(
0 0

0 1/3

)

is singular and not invertible! Thus, deterministic trends change the rate of convergence of estima-
tors. It turns out that β̂1,T and β̂2,T have different asymptotic rates of convergence. In particular,
we will learn faster about the slope of the trend line than the intercept.

To analyze the asymptotic behavior of the estimators we define the matrix

GT =

(
1 0

0 T

)
.

Note that the matrix is equivalent to its transpose, that is, GT = G′
T . We will analyze the following

quantity

GT (β̂T − β) =

(
1

T

∑
G−1

T xtx
′
tG

−1
T

)−1( 1

T

∑
G−1

T xtut

)
.

It can be easily verified that

1

T

∑
G−1

T xtx
′
tG

−1
T =

1

T

( ∑
1

∑
t/T∑

t/T
∑

(t/T )2

)
−→ Q,=

(
1 1/2

1/2 1/3

)
.

The term 1
T

∑
G−1

T xtut has the components 1
T

∑
ut and 1

T

∑
(t/T )ut which converge in probability

to zero based on the weak law of large numbers for non-identically distributed random variables.
Note that without the proper standardization 1

T

∑
tut will not converge to its expected value of

zero. The variance of the random variable TuT is getting larger and larger with sample size which
prohibits the convergence of the sample mean to its expectation.

With this, we can describe some asymptotic results:

yt = β1 + β2t+ ut, ut
i.i.d.∼ (0, σ2).

Let β̂i,T , i = 1, 2 be the OLS estimators of the intercept and slope coefficient, respectively. Then

β̂1,T − β1
p−→ 0 (3)

T (β̂2,T − β2)
p−→ 0. (4)

For the sampling distribution, consider the quantity

√
TGT (β̂T − β) =

[ √
T (β̂1,T − β)

T 3/2(β̂2,T − β2)

]
.
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This is equal to (
1

T

∑
G−1

T xtx
′
tG

−1
T

)−1( 1√
T

∑
G−1

T xtut

)
.

In this setup, the matrix 1n
T

∑
G−1

T xtx
′
tG

−1
T converges to a non-singular matrix Q as discussed

earlier. Consider now: (
1√
T

∑
G−1

T xtut

)
=

[
1√
T

∑
ut

1√
T

∑(
t
T

)
ut

]
.

The second term is in this is an indepedendent but not identically distributed random variable
because the scaling

(
t
T

)
changes over time. We can invoke a central limit theorem for these kinds

of random variables due to Lyapunov–see Casella and Berger (2002) Theorem 27.3.1. We deduce
that both elements of the vector have a limiting normal distribution. Next, we can use Cramer-
Wold theorem—for details see Casella and Berger (2002), Theorem 5.5.3—to conclude that a linear
combination of these elements will also have a limiting normal distribution, allowing us to analyze
the behavior of the full vector. Taken together, the sampling distribution of the OLS estimators
has the following large sample behavior

√
TGT (β̂T − β) =⇒ N (0, σ2Q−1).

Having said all this. When we consider the case where the variance is unknown:

σ̂2 =
1

T − 2

∑
(yt − β̂1 − β̂2t)

2,

under standard conditions, σ̂2 will consistently estimate σ2, and the asymptotic normality results
still hold, meaning that the scaled estimators, adjusted for unknown variance, converge to a normal
distribution with the true variance replaced by σ̂2. espite the fact that β1 and β2 have different
asymptotic rates of convergence, the t statistics still have N(0, 1) limited distribution because the
standard error estimates have offsetting behaviour.

1.1 OLS and Serial Dependence

Let’s ignore the constant term and consider the simplified regression

yt = βt+ ut. (5)

In times series models, it’s likely that the ut are serially correlated, that is, E[utut−h] ̸= 0 for some
h. This means that OLS will be inefficient. That is, the OLS estimator will not achieve the smallest
possible variance among unbiased estimators. Let’s look at example with MA(1) errors.

ut = ϵt + θϵt−1, ϵt ∼ iid(0, σ2
ϵ ).
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It’s easy to verify that:

E[u2t ] = E[(ϵt + θϵt−1)
2] = (1 + θ2)σ2

ϵ (6)

E[utut−1] = E[(ϵt + θϵt−1)(ϵt−1 + θϵt−2)] = θσ2
ϵ (7)

E[utut−h] = 0 h > 1. (8)

For the regression model 5, the OLS estimator is given by

β̂T − β =

∑
tut∑
t2

.

To find the limiting distribution, note that

1

T 3

T∑
t=1

t2 =
T (T + 1)(2T + 1)

6T
−→ 1

3
.

∑
tut =

∑
t(ϵt + θϵt−1)

=
0 +ϵ1 +2ϵ2 +3ϵ3 + . . .

+θϵ0 +2θϵ1 +3θϵ2 +4θϵ3 + . . .

=
T−1∑
t=1

(t+ θ(t+ 1))ϵt + θϵ0 + TϵT

=
T−1∑
t=1

(1 + θ)tϵt +
T−1∑
t=1

θϵt + θϵ0 + TϵT

=
T∑
t=1

(1 + θ)tϵt−θTϵT + θ
T∑
t=1

ϵt−1︸ ︷︷ ︸
asymp. negligible

. (9)

After standardization by T−3/2 we obtain

T−3/2
∑

tut =
1√
T
(1 + θ)

T∑
t=1

(t/T )ϵt −
1√
T
θϵT +

θ

T

1√
T

T∑
t=1

ϵt−1.

1. First term obeys CLT

2. Second Term goes to zero

3. Third Term goes to zero

Thus ,
T 3/2(β̂T − β) =⇒

(
0, 3σ2

ϵ (1 + θ)2
)
.

Consider the following model with iid disturbances

yt = βt+ ut, ut ∼ iid(0, σ2
ϵ (1 + θ2)).
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The unconditional variance of the disturbances is the same as in the model with moving average
disturbances. It can be verified that

T 3/2(β̂T − β) =⇒
(
0, 3σ2

ϵ (1 + θ2)
)
.

If θ is positive then the limit variance of the OLS estimator in the model with $i.i.d.$ disturbances is
smaller than in the trend model with moving average disturbances. Thus, Positive serial correlated
data are less informative than $i.i.d.$ data. Figure 2 displays the sampling distribution of the OLS
estimator under errors with identical unconditional variance but with serial correlation (blue line)
and under i.i.d. disturbances (orange dashed line). In this set of simulations, β = 0.5, θ = 0.6, and
σϵ = 1. The sample size is given by T = 500. Clearly, the estimator under serial correlation exhibits
large variance, though both estimators are asymptotically unbiased.

Figure 2: OLS is Inefficient Under Serially Correlated Errors

2 Stochastic Trends

Nelson and Plosser (1982) challenged the idea that economic activity ought to be modeled as
temporary (stationary) fluctuations around a deterministic trend. They proposed that economic
time series might instead be better represented by stochastic trends, where shocks have permanent
effects, leading to a “random walk-like” behavior. This implies that the series does not revert
to a deterministic path but can drift over time due to accumulated random changes. Such time
series are known as “integrated” processes because they require differencing to achieve stationarity.
Specifically, a time series that follows a stochastic trend can be modeled as an integrated process,
often denoted as an I(1) process, where differencing once will result in a stationary series.
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Example 2.1. A random walk with drift follow the process

yt = ϕ0 + yt−1 + ϵt ϵt ∼ WN(0, σ2)

The variable yt is said to be integrated of order one.

The applied work of Nelson and Plosser (1982) came alongside important technical advances
in econometrics and statistics. In an important contribution, Dickey and Fuller (1979) examined
the sampling distribution of estimators for autoregressive time series with a unit root and provided
tables with critical values for unit root tests. This meant researchers could formally test for the
presence of unit roots in time series data, allowing for differentiation between stochastic trends and
stationary fluctuations. Later Phillips (1986) and Phillips (1987) published two papers on spurious
regression and time series regressions with a unit root that employ the mathematical theory of
convergence of probability measures for metric spaces. This marked a “technological breakthrough”
and the field started to grow at an exponential rate thereafter.

Let’s return the random walk model in Example 2.1 omitting drift, that is, ϕ0 = 0.

yt = ϕyt−1 + ϵt, ϵtWN(0, σ2)

There are three cases:

• |ϕ| < 1: stationarity! we talked about this last week
• |ϕ| > 1: explosive! We will not analyze explosive processes in this course.
• |ϕ| = 1. This is the unit root and will be the focus of this part of the lecture.

If ϕ = 1 then the AR(1) model simplifies to yt = yt−1 + ϵt with ∆ = 1 − L, we have ∆yt = ϵt
form a stationary process, and the random walk is integrated of order one, or I(1).

It’s important to understand the implications of a unit root process relative to those of a persist,
but ultimately stationary process. For now, let’s suppose that the AR process is initialized by
y0 ∼ N (0, 1). Then yt can be expressed as

yt = ϕty0 +

t∑
τ=1

ϕτ−1ϵt+1−τ .

The unconditional mean of this process is given by:

E[yt] = ϕt−1E[y0] +
t∑

τ=1

ϕτ−1E[ϵτ ] = 0.
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This is true regardless of the value of ϕ0. Consider now the unconditionaly variance:

V[yt] = ϕ2(t−1)V[y0] +
t∑

τ=1

ϕ2(τ−1)V[ϵτ ] (10)

= ϕ2(t−1)V[y0] + σ2
t∑

τ=1

ϕ2(τ−1)

=

{
ϕ2(t−1)V[y0] + σ2 1−ϕ2t

1−ϕ2 −→ σ2

1−ϕ2 if |ϕ| < 1

V[y0] + σ2t −→ ∞ if |ϕ| = 1

as t → ∞. For the random walk process, the variance grows linearly with time, ultimately leading
to an infinite variance. This is in contrast to the stationary AR(1) process with |ϕ| < 1, where the
variance approaches a constant (finite) value over time. This characteristic of a unit root process
reflects the permanent effects of shocks on the series.

Consider next the conditional expectation of yt given y0 is

E[yt|y0] = ϕτ−1y0 −→

{
0 if |ϕ| < 1

y0 if ϕ = 1

}

as t → ∞. In the unit root case, the best prediction of future yt is the initial y0 at all horizons, that
is, “no change”. In the stationary case, the conditional expectation converges to the unconditional
mean. For this reason, stationary processes are also called “mean reverting”. Stationary and unit
root processes differ in their behavior over long time horizons. Suppose that σ2 = 1, and y0 = 1.
Then the conditional mean and variance of a process yt with ϕ = 0.995 is given by

Table 1: Conditional Expectations and Variances in Statoinary Process
Horizon t 1 2 5 10 20 50 100
E[yt | y0] 0.995 0.990 0.975 0.951 0.905 0.778 0.606
V[yt | y0] 1.000 1.990 4.901 9.563 18.21 39.52 63.46

If interestered in long run predictions, very important to distinguish these two cases. But note
that long run predictions face serious extrapolation problems.

2.1 Heuristic Introduction to Asymptotics of Unit Root Processes

Suppose our data is generated under the random walk of Example 2.1, and we regress yt on a
constant and a lag of itself. If we’re interest in testing the null hypothesis H0 : ϕ = 1, we have to
find the sampling distribution of a suitable test statistic such as the t ratio

ϕ̂T − 1√
σ2/

∑
y2t−1

.

In the last lecture, we described a variety of WLLN and CLTs for stationary processes. Unfortu-
nately, these don’t apply in this case.

To sketch the asymptotics of the test statisticis, let’s simplify our example with ϕ0 = 0, σ = 1,
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and y0 = 0. Thus, the process yt can be represented as

yT =

T∑
t=1

ϵt.

The central limit theorem for i.i.d. random variables implies

yT√
T

=
1√
T

∑
ϵt =⇒ N (0, 1).

This suggests that
1

T

∑
yt =

1√
T

∑[√
t

T

1√
t

t∑
τ=1

ϵτ

]
will not converge to a constant in probability but instead to a random variable. We’ll need some
more probably theory to analyze this.

In our course, We used T = {0,±1,±2, . . .}. Consider instead the continous time set S = [0, 1].
Let’s consider random elements W (s) that correspond to functions this interval. We will place
some probability Q on these functions and show that Q can be helpful in the approximation of the
distribution of

∑
yt Defining probability distributions on function spaces is a pain! Let C be the

space of continuous functions on the interval [0, 1]. We will define a probability distribution for
the function space C. This probability distribution is called “Wiener measure”. Whenever we draw
an element from the probability space weobtain a function W (s), s ∈ [0, 1]. Let Q[·] denote the
expectation operator under the Wiener measure.
Properties of W (s). The random function has some nice properties:

• W (0) = 0 almost surely. If we repeatedly draw functions under the Wiener measure and
evaluate these functions at a particular value s = s′, then

Q[{W (s′) ≤ w}] = 1√
2πs′

∫ w

−∞
e−u2/2s′du

that is,
W (s′) ∼ N (0, s′)

If s′ = 0 then the equations is interpreted to mean Q[{W (0) = 0}] = 1. Thus W (0) = 0 with
probability one.

• W (s) has independent increments. If

0 ≤ s1 ≤ s2 ≤ . . . ≤ sk ≤ 1

Then the random variables

W (s2)−W (s1), W (s3)−W (s2) . . . , W (sk)−W (sk−1)

are independent.
• For 0 ≤ t < s, the increment W (s) − W (t) follows a normal distribution with mean 0 and

variance s− t. Note: W (1) ∼ N (0, 1).
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It can be shown that there indeed exists a probability distribution on C with these properties.
Roughly speaking, the Wiener measure is to the theory of stochastic processes, what the normal
distribution is to the theory related to real valued random variables. In the context of unit root
processes and econometrics, W (s) can be thought of as the continuous-time analog of the partial
sum of a random walk. Define the partial sum process

YT (s) =
1√
T

∑
{t ≤ ⌊Ts⌋}ϵt

where ⌊x⌋ denotes the integer part of x. Since we assumed that ϵt ∼ iid(0, 1), the partial sum
process is a random step function. We can smooth this out via interpolation.

ȲT (s) =
1√
T

∑
{t ≤ ⌊Ts⌋}ϵt + (Ts− ⌊Ts⌋)ϵ⌊Ts⌋+1/

√
T

In theory, there are a couple of ways to randomly generate continuous functions. In the first case,
we could simply draw a function W (s) from the Wiener distribution. We did not examine how
to do the sampling in practice, but since the Wiener distribution is well-defined, it is theoretically
possible. In the second, Generate a sequence ϵ1, . . . , ϵT , where ϵt ∼ iid(0, 1) and compute ȲT (s). It
turns out that as T → ∞ these are basically the same. The following functional CLT establishes
this connection.

Functional Central Limit Theorem. Let ϵt
i.i.d.∼ (0, σ2). Then

YT (s) =
1

σ
√
T

T∑
t=1

{t ≤ ⌊Ts⌋}ϵt =⇒ W (s)

More mathematical background can be found in many texts on measure-theoretic probability in-
cluding Billingsley (1999) or Dudley (2002). Davidson (1994) gives a more econometrics-focused
introdution to limit theorems. With this theory in hand, it’s easy to now simulation from a Wiener
process. Figure 3 shows on realization of a Wiener process, simulated over the interval [0, 1].

The upshot of all this is that the sum

1

T

t∑
t=1

yt−1ϵt

convergences to a stochastic integral. Thus, suppose that yt = yt−1 + ϵt, where ϵt
i.i.d.∼ (0, σ2) and

y0 = 0. Then
1

σ2T

∑
yt−1ϵt =⇒

∫
W (s)dW (s).

where W (s) denotes a standard Wiener process. We can use this to develop tests!
Asymptotic Theory for Unit Root Process. Suppose that yt = ϕyt−1+ϵt, where ϵt ∼ iid(0, σ2),
ϕ = 1, and y0 = 0. The sampling distribution of the OLS estimator ϕ̂T of the autoregressive
parameter ϕ = 1 and the sampling distribution of the corresponding t-statistic have the following
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Figure 3: A Wiener Process
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asymptotic approximations

z(ϕ̂T ) =⇒
1
2(W (1)2 − 1)∫ 1

0 W (s)2ds
(11)

t(ϕ̂T ) =⇒
1
2(W (1)2 − 1)[∫ 1
0 W (s)2ds

]1/2 (12)

where W (s) denotes a standard Wiener process.
To see these asymptotics, consider the simplified model yt = ϕyt−1+ut. We’ll try to estimation

ϕ by regression yt on yt−1 (omitting the constant term.) Let’s consider two cases for the true value
of ϕ ∈ {0.95, 1}. For each value of ϕ, we simulate many time series of length T = 5000 and estimate
ϕ via OLS.

In practice, testing for a unit root in time series data uses results along these lines, with the
specific critical values tabulated for the way lags of yt enters the regression. You may have heard of
Dickey-Fuller and Augmented Dickey-Fuller tests, the “augmented” refers to the inclusion of lagged
differences of the time series as additional regressors to account for higher-order serial correlation,
thus improving test performance in the presence of autocorrelated disturbances.

2.2 Replicating Nelson and Plosser (1982)

Nelson and Plosser (1982) investigate whether a set of key macroeconomic time series exhibited were
better described by deterministic or stochastic trend models. We’ll return to the example in Figure
1 and focus on log Real GNP from 1909-1970. They first examine the estimated autocorrelation
functions of the level and deviations from the time trend, both plotted in Figure 1:
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T ρ̂1 ρ̂2 ρ̂3 ρ̂4 ρ̂5 ρ̂6
Level 110.00 0.96 0.92 0.87 0.83 0.79 0.75
Dev. Trend 110.00 0.93 0.86 0.77 0.70 0.63 0.57

These look pretty good, in the sense that the autocorrelations for the fluctuations (after removing the
time trend) die out quickly, with a barely positive autocorrelation after the six lag. Unfortunately,
as Nelson and Plosser (1982) point out, these estimated autocorrelations are also consistent with
an integrated series. These kinds of statisical calculations often give misleading results (as we have
just seen) when the underlying series is integrated.

To distinguish between the two trend paradigms, Nelson and Plosser (1982) decide to run the
regression

yt = µ+ ϕ1yt−1 + γt+
K∑
k=1

ϕ∆k∆yt−k + ut.

They are interested in testing H0 : ϕ1 = 1, γ = 0, and use the results from Dickey-Fuller to construct
critical values. For log Real GNP, they set K = 2. The results of the regression can be seen below.

RealGNP

T 110.00
K 2.00
µ̂ -4.00
t(µ̂) -0.94
γ̂ 0.19
t(γ̂) 1.56
ϕ̂1 0.99
t(ϕ̂1) -0.26
s(û) 15.87
ρ̂1 -0.00

These results match the first row of Table 5 in Nelson and Plosser (1982). The t-stat of −2.99

would indicate that one should reject the marginal hypothesis that ϕ1 = 1 at conventional significane
levels. But these critical values are invalid in the unit root context. Instead the, say, 5 percent critial
value tabulated by Dickey and Fuller is about −3.5. Thus, one cannot reject the null that real GNP
is well described by a unit root process.

2.3 Cointegrated Processes

We are often concerned with trending behavior for more than a single time series. For example,
consider a bivariate model with a common stochastic trend:

y1,t = γy2,t + u1,t (13)

y2,t = y2,t−1 + u2,t (14)

where [u1,t, u2,t]
′ i.i.d.∼ iid(0,Ω). Both y1,t and y2,t have a stochastic trend. However, there exists a

linear combination of y1,t and y2,t, namely,

y1,t − γy2,t = ut

14



that is stationary. Therefore, y1,t and y2,t are called cointegrated. These profilerate in macro.
Consider the RBC model:

max
{ct,kt}

E0

[ ∞∑
t=0

βt ln ct

]
(15)

subject to

yt = ct + kt = A1−αkαt−1

lnAt = γ + lnAt−1 + ϵt.

Tedious algebra yields:

ln yt = − αγ

1− α
+ lnAt and ln ct = ln (1− βα)yt.

Thus, yt and ct both inherit the stochastic trend in lnAt. Back to our statistical framework. Clearly,
y2,t is a random walk. Moreover, it can be easily verified that y1,t follows a unit root process.

y1,t − y1,t−1 = γ(y2,t − y2,t−1) + u1,t − u1,t−1 (16)

Therefore,

y1,t = y1,t−1 + γu2,t + u1,t − u1,t−1 (17)

Thus, both y1,t and y2,t are integrated processes. The vector [1,−γ]′ is called the cointegrating
vector. Note that the cointegrating vector is only unique up to normalization. We’ll talk more
about estimating these models once we’ve discussed vector autoregressions.
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