Cranking through Bayesian Calculus, Part II

Ed Herbst

March 14, 2025

Let's get some more practice with the Bayesian machinery in a regression model.

$$y_t = x'_t \beta + u_t, \quad u_t \stackrel{i.i.d.}{\sim} N(0, \sigma^2).$$
(1)

We've practiced the Bayesian machinery already setting $\sigma^2 = 1$. Of course, that's a bad assumption for many problems. So let's incorporate estimation of σ^2 into our analysis. It is much more common in contempory analysis to use the *inverse gamma distribution* for σ^2 with parameters α and β . Specifically, a random variable σ^2 follows an inverse gamma distribution if and only if

$$p(\sigma^2|\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} (\sigma^2)^{-\alpha-1} \exp\left(\frac{-\beta}{\sigma^2}\right).$$
(2)

Problem 1: Plot the inverse gamma density for two different parameterizations $(\alpha, \beta) = (2, 1)$ and $(\alpha, \beta) = (2, 2)$. What is the difference between the two densities?

your code here

The figures are helpful for gaining some intuition about the distribution. We can get some more insight from looking at moments of the distribution.

Problem 2: What are the expressions for the mean, median, variance of σ^2 ? You can do the integration (by parts) yourself, or just check them out on Wikipedia.

your code here

In formulating a prior for a particular problem, it seems like it could be difficult to express beliefs about σ^2 , given the expressions you've written down for Problem 2. Another way to parameterize the inverse gamma distribution comes from Gelman et al., who use a bijection from $(\nu_0, s_0^2) \rightarrow (\alpha, \beta)$ where

$$\left(\alpha,\beta\right) = \left(\frac{\nu_0}{2}, \frac{\nu_0}{2}s_0^2\right)$$

They refer to this distribution as a scaled inverse chi-squared distribution because, if $z \sim \chi^2(\nu_0)$, that is, if z follows a chi-squared distribution with ν_0 degrees of freedom, then $\sigma^2 = \nu_0 s_0^2/z$ follows the inverse gamma distribution.

Problem 3: Rewrite the density and the key moments of the distribution using this parameterization. What happens to the mean and median as $\nu_0 \longrightarrow \infty$?

your code here

Let's get some intuition for this parameterization, and some practice constructing the posterior for σ^2 . Assume that we have T independent observations of a normal random variables y_t ,

$$y_t \sim iidN(0,\sigma^2), \quad t = 1,\ldots,T.$$

Problem 4: Write down the likelihood $p(Y|\sigma^2)$. Construct the average squared deviation of y_t from its mean. Call this s^2 , and substitute this into the likelihood. Is this a sufficient statistic? Why or why not?

your code here

Problem 5: Derive the posterior of $\sigma^2 | Y$,

$$p(\sigma^2|Y) \propto p(Y|\sigma^2)p(\sigma^2),$$

using the (ν_0, s_0^2) parameterization of the prior distribution. Looking at the expression, how can you interpret ν_0 and s_0^2 ?