

Econ 616: Problem Set 1

Ed Herbst

Problem 1

Let $\phi(z) \equiv 1 - \phi_1 z - \phi_2 z^2$. What we need to show is the solution of the equation $\phi(z) = 0$ lies outside of unit circle. Let z_1 and z_2 be the solutions of $\phi(z) = 0$.

- **Case 1:** Suppose $\phi_1^2 + 4\phi_2 \leq 0$. Then we have either $z_1 = z_2$ or that z_1 and z_2 are complex numbers and conjugate of each other. In any case the norm of the solution is given by $\sqrt{\left|\frac{1}{\phi_2}\right|}$. Hence the condition is $|\phi_2| < 1$.
- **Case 2:** Suppose $\phi_1^2 + 4\phi_2 > 0$. Now both solutions are real number. Suppose $\phi_2 = 0$. This is AR(1) model and the condition is $|\phi_1| < 1$. Suppose $\phi_2 \neq 0$. It would be easier to analyze the equation $\psi(z) = 0$ where $\psi(z) \equiv z^2 + \frac{\phi_1}{\phi_2}z - \frac{1}{\phi_2}$ which has the same solutions as $\phi(z) = 0$. If $\phi_2 < 0$, then the conditions are $\psi(1) > 0$ and $\psi(-1) > 0$ which means that $\phi_2 + \phi_1 < 1$ and $\phi_2 - \phi_1 < 1$. If $\phi_2 > 0$, then the conditions are $\psi(1) < 0$ and $\psi(-1) < 0$ which means that $\phi_2 + \phi_1 < 1$ and $\phi_2 - \phi_1 < 1$.

Combining all, we have

$$\phi_1 + \phi_2 < 1, \quad \phi_2 - \phi_1 < 1 \text{ and } \phi_2 > -1.$$

Problem 2

Multiplying both sides of the equation by y_{t-j} , we have

$$y_t y_{t-j} = \sum_{i=1}^p \phi_i y_{t-i} y_{t-j} + \epsilon_t y_{t-j}.$$

Taking the expectation, we have

$$E(y_t y_{t-j}) = \sum_{i=1}^p \phi_i E(y_{t-i} y_{t-j}) + E(\epsilon_t y_{t-j}).$$

Or we can rewrite the above as

$$\gamma_{yy,j} = \sum_{i=1}^p \phi_i \gamma_{yy,|i-j|} + E(\epsilon_t y_{t-j}).$$

For $j = 0$, $E(\epsilon_t y_{t-j}) = E(\epsilon_t y_t) = E(\epsilon_t^2) = \sigma_\epsilon^2$ which gives the first equation. For $j = 1, \dots, p$, $E(\epsilon_t y_{t-j}) = 0$ which gives the rest.

For the AR(3) process in Problem 2, we have

$$\begin{aligned} 1 &= \gamma_{yy,0} - (1.3\gamma_{yy,1} - 0.9\gamma_{yy,2} + 0.3\gamma_{yy,3}) \\ 0 &= 1.3\gamma_{yy,0} - \gamma_{yy,1} + (-0.9\gamma_{yy,1} + 0.3\gamma_{yy,2}) \\ 0 &= -0.9\gamma_{yy,0} - \gamma_{yy,2} + (1.3\gamma_{yy,1} + 0.3\gamma_{yy,1}) \\ 0 &= 0.3\gamma_{yy,0} - \gamma_{yy,3} + (1.3\gamma_{yy,2} - 0.9\gamma_{yy,1}) \end{aligned}$$

Solutions to this system of equations are

$$\gamma_{yy,0} = 3.38 \quad \gamma_{yy,1} = 2.45 \quad \gamma_{yy,2} = 0.88 \quad \gamma_{yy,3} = -0.48$$

Problem 3

See jupyter notebook

Problem 4

- The least squares estimates can be written as:

$$\hat{\rho}_{LS} = \rho + \left(\sum_{t=2}^T y_{t-1}^2 \right)^{-1} \sum_{t=2}^T \epsilon_t y_{t-1} \quad (1)$$

Consider an alternative representation of y_t .

$$\begin{aligned} t \text{ even :} \quad y_t &= y_t^e = \rho^2 y_t^e + \sigma \epsilon_t + \rho \alpha \sigma \epsilon_{t-1} \\ t \text{ odd :} \quad y_t &= y_t^o = \rho^2 y_t^o + \alpha \sigma \epsilon_t + \rho \sigma \epsilon_{t-1}. \end{aligned} \quad (2)$$

Consider,

$$\begin{aligned} \frac{1}{T} \sum_{t=2}^T y_{t-1}^2 &\approx \frac{1}{2} \frac{1}{T/2} \sum_{t=2}^{T/2} (y_{2(t-1)+1}^o)^2 + \frac{1}{2} \frac{1}{T/2} \sum_{t=2}^{T/2} (y_{2t}^e)^2 \\ &\rightarrow \frac{1}{2} \frac{\alpha^2 + \rho^2}{1 - \rho^4} \sigma^2 + \frac{1}{2} \frac{1 + \alpha^2 \rho^2}{1 - \rho^4} \sigma^2. \\ &= \frac{1}{2} \frac{(1 + \alpha^2)(1 + \rho^2)}{(1 - \rho^2)(1 + \rho^2)} \sigma^2. \\ &= \frac{1 + \alpha^2}{2} \frac{\sigma^2}{1 - \rho^2}. \end{aligned} \quad (3)$$

Moreover, The sequence $\{\epsilon_t y_{t-1}\}$ is a Martingale difference sequence (MDS). If $|\rho| < 1$, $\frac{1}{T} \sum_{i=1}^T \epsilon_i y_{i-1} \rightarrow 0$ as $T \rightarrow \infty$. Thus, the least squares estimator is consistent.

- Using arguments along the lines of (3) and the central limit theorem for MDS yields the asymptotic distribution for $\hat{\rho}_{LS}$. In particular, The least squares estimator $\hat{\rho}_{LS} = \left(\sum_{t=2}^T y_{t-1}^2 \right)^{-1} \sum_{t=2}^T y_t y_{t-1}$ in large samples behaves such that

$$\sqrt{T}(\hat{\rho}_{LS} - \rho) \sim N(0, \mathbb{V}_{\hat{\rho}}). \quad (4)$$

This variance take the form:

$$\mathbb{V}_{\hat{\rho}} = \frac{\mathbb{E}[\epsilon_t^2 y_{t-1}^2]}{\mathbb{E}[y_{t-1}^2]^2} \quad (5)$$

Tedious algebra yields:

$$E[y_{t-1}^2] = \frac{1 + \alpha^2}{2} \frac{\sigma^2}{1 - \rho^2} \quad (6)$$

$$E[\epsilon_t^2 y_{t-1}^2] = \frac{\alpha^2(1 + \alpha^2 \rho^2) + (\alpha^2 + \rho^2)}{2} \frac{\sigma^4}{1 - \rho^4} \quad (7)$$

Thus:

$$\mathbb{V}_{\hat{\rho}} = 2 \left(\frac{\rho^2 + 2\alpha^2 + \alpha^4 \rho^2}{1 + 2\alpha^2 + \alpha^4} \right) \left(\frac{1 - \rho^2}{1 + \rho^2} \right) \quad (8)$$

- It is easy to see that this quantity converges in probability to

$$\mathbb{V}_{\hat{\rho}}^* = \frac{\mathbb{E}[\epsilon_t^2]}{\mathbb{E}[y_{t-1}^2]} = 1 - \rho^2 \quad (9)$$

- Tedious algebra shows that:

$$\mathbb{V}_{\hat{\rho}} \leq \mathbb{V}_{\hat{\rho}}^*.$$

Thus, the typical estimator for standard errors is inconsistent and in particular it overstates the variance of $\hat{\rho}_{LS}$.

Problem 5

Recall from the lecture notes that the HP filter can be written as:

$$f^{HP}(\omega) = \left[\frac{16 \sin^4(\omega/2)}{1/1600 + 16 \sin^4(\omega/2)} \right]^2. \quad (10)$$

The spectrum for the AR1 can be written as:

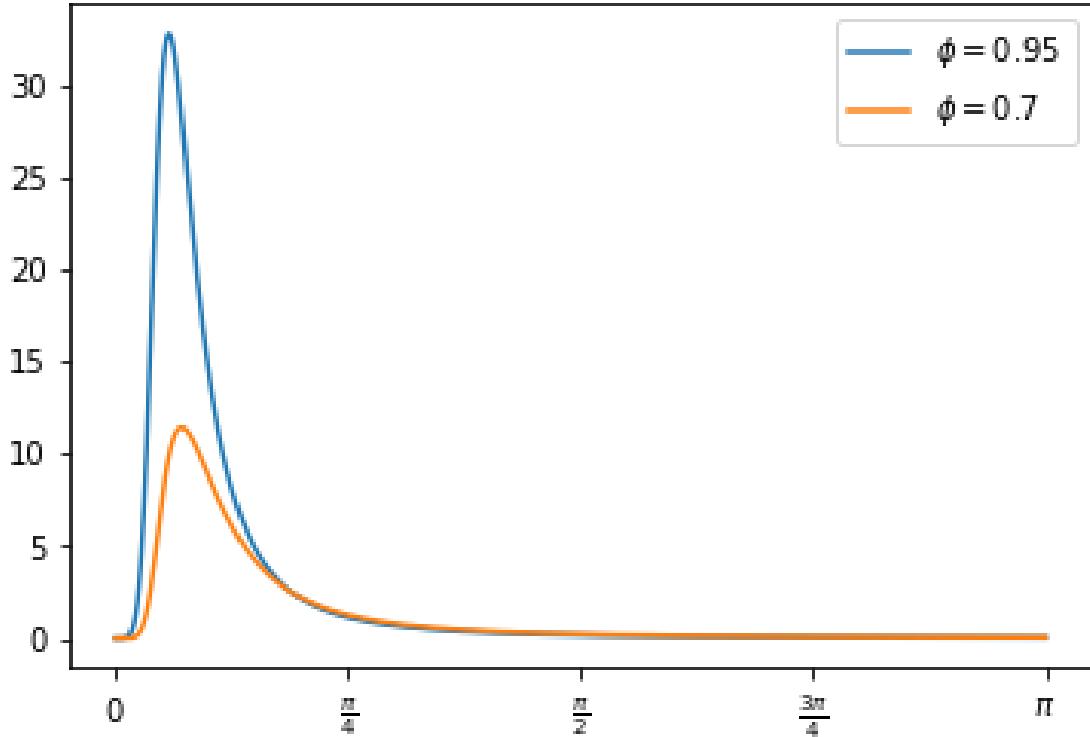
$$f^{AR}(\omega) = [1 - 2\phi \cos \omega + \phi^2 (\cos^2 \omega + \sin^2 \omega)]^{-1}. \quad (11)$$

From the lecture notes, we know that:

$$f^Y(\omega) = f^{HP}(\omega)f^{AR}(\omega) \quad (12)$$

The spectrum for $\phi = 0.95$ and $\phi = 0.70$ is plotted in Figure 3. The spectrum peaks at about $\pi/8$, which is associated with a cycle lasting about 16 quarters = $(2\pi/(\pi/8))$. As ϕ increases, this peak sharpens. So here the HP filter is introducing as spurious periodicity in our data.

```
<ipython-input-14-04db9a7f9b5a>:6: RuntimeWarning: divide by zero encountered in divide
  return ( (sigma**2/(2*omega)) /
<ipython-input-14-04db9a7f9b5a>:9: RuntimeWarning: invalid value encountered in multiply
  f = lambda omega, **kwds: f_HP(omega)*f_AR1(omega, **kwds)
<matplotlib.legend.Legend at 0x7f5cd9dfb8b0>
```



Another way to see this is look at the autocovariance function of the implied process, which we can recover by the inverse fourier transform as discussed in class:

$$\gamma_k = \int_{-\pi}^{\pi} f^Y(\omega) e^{i\omega k}. \quad (13)$$

The HP filter induces complex dynamics into the process!

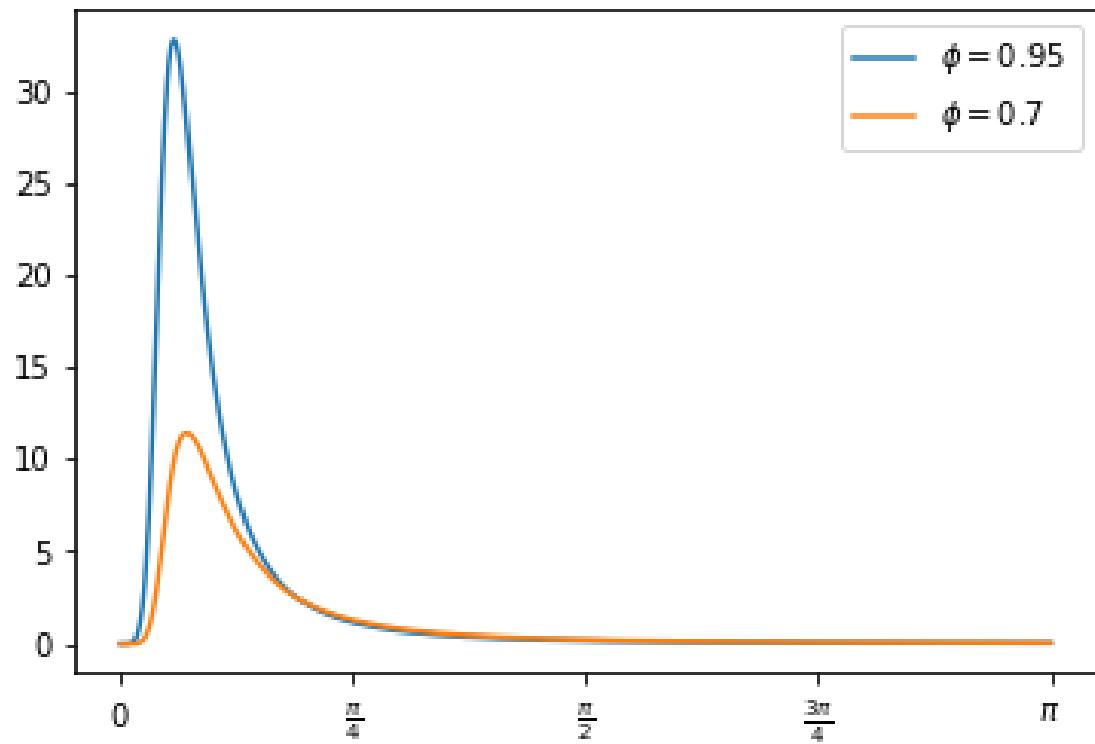


Figure 1: Spectrum Associated with HP filtering an AR(1)

```

from scipy.integrate import quad
H = 20
really_small = 1e-8
acf = [quad(lambda omega:
            2*f(omega)*np.cos(omega*k), really_small, np.pi)[0]
        for k in np.arange(H)]
plt.plot(acf)

phi = 0.95
acf = [phi**j / (1-phi**2) for j in np.arange(H)]
plt.plot(acf, linestyle='dashed')

```

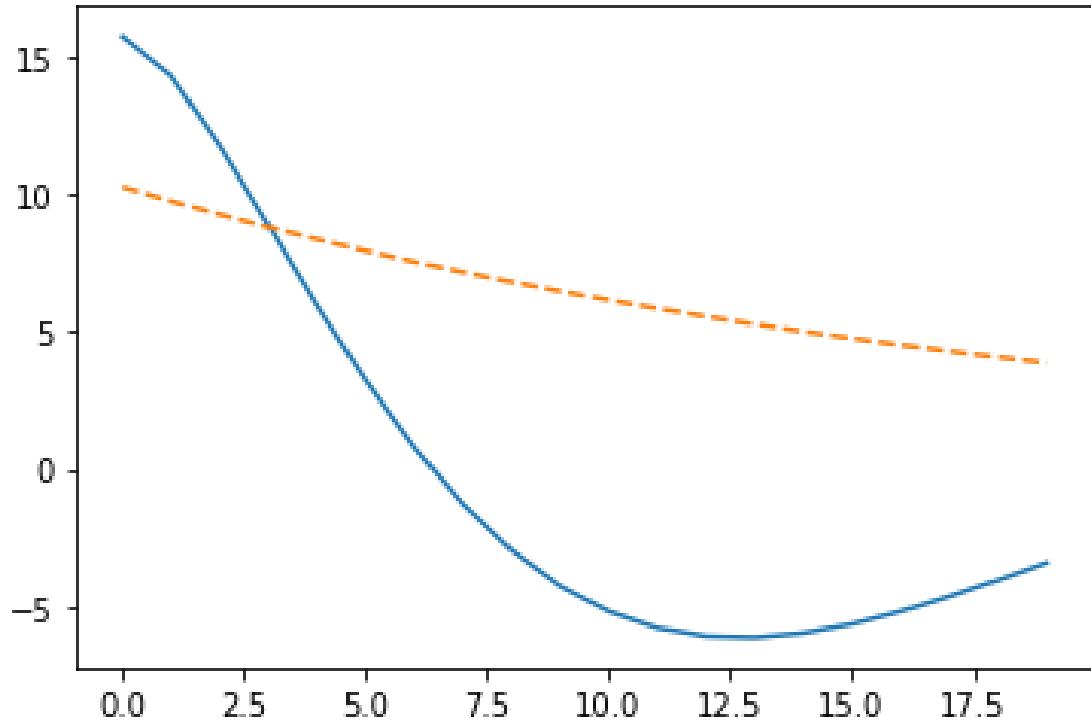


Figure 2: ACF of AR(1) vs. ACF of HP filtered Component