
Econ 616: Problem Set 1

Ed Herbst

Problem 1

Let ϕ(z) ≡ 1 − ϕ1z − ϕ2z
2. What we need to show is the solution of the equation ϕ(z) = 0 lies

outside of unit circle. Let z1 and z2 be the solutions of ϕ(z) = 0.

• Case 1: Suppose ϕ21 + 4ϕ2 ≤ 0. Then we have either z1 = z2 or that z1 and z2 are com-

plex numbers and conjugate of each other. In any case the norm of the solution is given by√∣∣∣ 1
ϕ2

∣∣∣. Hence the condition is |ϕ2| < 1.

• Case 2: Suppose ϕ21 + 4ϕ2 > 0. Now both solutions are real number. Suppose ϕ2 = 0. This

is AR(1) model and the condition is |ϕ1| < 1. Suppose ϕ2 ̸= 0. It would be easier to analyze

the equation ψ(z) = 0 where ψ(z) ≡ z2+ ϕ1

ϕ2
z− 1

ϕ2
which has the same solutions as ϕ(z) = 0.

If ϕ2 < 0, then the conditions are ψ(1) > 0 and ψ(−1) > 0 which means that ϕ2 + ϕ1 < 1

and ϕ2−ϕ1 < 1. If $ϕ2 > 0 $, then the conditions are ψ(1) < 0 and ψ(−1) < 0 which means

that ϕ2 + ϕ1 < 1 and ϕ2 − ϕ1 < 1.

Combining all, we have

ϕ1 + ϕ2 < 1, ϕ2 − ϕ1 < 1 and ϕ2 > −1.

Problem 2

Multiplying both sides of the equation by yt−j , we have

ytyt−j =

p∑
i=1

ϕiyt−iyt−j + ϵtyt−j .

Taking the expectation, we have

E(ytyt−j) =

p∑
i=1

ϕiE(yt−iyt−j) + E(ϵtyt−j).
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Or we can rewrite the above as

γyy,j =

p∑
i=1

ϕiγyy,|i−j| + E(ϵtyt−j).

For j = 0, E(ϵtyt−j) = E(ϵtyt) = E(ϵ2t ) = σ2ϵ which gives the first equation. For j = 1, . . . , p,

E(ϵtyt−j) = 0 which gives the rest.

For the AR(3) process in Problem 2, we have

1 = γyy,0 − (1.3γyy,1 − 0.9γyy,2 + 0.3γyy,3)

0 = 1.3γyy,0 − γyy,1 + (−0.9γyy,1 + 0.3γyy,2)

0 = −0.9γyy,0 − γyy,2 + (1.3γyy,1 + 0.3γyy,1)

0 = 0.3γyy,0 − γyy,3 + (1.3γyy,2 − 0.9γyy,1)

Solutions to this system of equations are

γyy,0 = 3.38 γyy,1 = 2.45 γyy,2 = 0.88 γyy,3 = −0.48

Problem 3

See jupyter notebook

Problem 4

• The least squares estimates can be written as:

ρ̂LS = ρ+

(
T∑
t=2

y2t−1

)−1 T∑
t=2

ϵtyt−1 (1)

Consider an alternative representation of yt.

t even : yt = yet = ρ2yet + σϵt + ρασϵt−1

t odd : yt = yot = ρ2yot + ασϵt + ρσϵt−1. (2)

Consider,

1

T

T∑
t=2

y2t−1 ≈
1

2

1

T/2

T/2∑
t=2

(yo2(t−1)+1)
2 +

1

2

1

T/2

T/2∑
t=2

(ye2t)
2

→ 1

2

α2 + ρ2

1− ρ4
σ2 +

1

2

1 + α2ρ2

1− ρ4
σ2.

=
1

2

(1 + α2)(1 + ρ2)

(1− ρ2)(1 + ρ2)
σ2.

=
1 + α2

2

σ2

1− ρ2
. (3)
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Moreover, The sequence {ϵtyt−1} is a Martingale difference sequence (MDS). If |ρ| < 1,
1
T

∑T
i=1 ϵtyt−1 → 0 as T → ∞. Thus, the least squares estimator is consistent.

• Using arguments along the lines of (3) and the central limit theorem for MDS yields the

asymptotic distribution for ρ̂LS . In particular, The least squares estimator ρ̂LS =
(∑T

t=2 y
2
t−1

)−1∑T
t=2 ytyt−1

in large samples behaves such that

√
T (ρ̂LS − ρ) ∼ N(0,Vρ̂). (4)

This variance take the form:

Vρ̂ =
E[ϵ2t y2t−1]

E[y2t−1]
2

(5)

Tedious algebra yields:

E[y2t−1] =
1 + α2

2

σ2

1− ρ2
(6)

E[ϵ2t y
2
t−1] =

α2(1 + α2ρ2) + (α2 + ρ2)

2

σ4

1− ρ4
(7)

Thus:

Vρ̂ = 2

(
ρ2 + 2α2 + α4ρ2

1 + 2α2 + α4

)(
1− ρ2

1 + ρ2

)
(8)

• It is easy to see that this quantity converges in probability to

V∗
ρ̂ =

E[ϵ2t ]
E[y2t−1]

= 1− ρ2 (9)

• Tedious algebra shows that:

Vρ̂ ≤ V∗
ρ̂.

Thus, the typical estimator for standard errors is inconsistent and in particular it overstates

the variance of ρ̂LS .

Problem 5

Recall from the lecture notes that the HP filter can be written as:

fHP (ω) =

[
16 sin4(ω/2)

1/1600 + 16 sin4(ω/2)

]2
. (10)

The spectrum for the AR1 can be written as:

fAR(ω) =
[
1− 2ϕ cosω + ϕ2(cosω2 + sin2 ω)

]−1
. (11)
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From the lecture notes, we know that:

fY (ω) = fHP (ω)fAR(ω) (12)

The spectrum for ϕ = 0.95 and ϕ = 0.70 is plotted in Figure 3. The spectrum peaks at about

π/8, which is associated with a cycle lasting about 16 quarters = (2π/(π/8)). As ϕ increases, this

peak sharpens. So here the HP filter is introducing as spurious periodicity in our data.

<ipython-input-14-04db9a7f9b5a>:6: RuntimeWarning: divide by zero encountered in divide

return ( (sigma**2/(2*omega)) /

<ipython-input-14-04db9a7f9b5a>:9: RuntimeWarning: invalid value encountered in multiply

f = lambda omega, **kwds: f_HP(omega)*f_AR1(omega, **kwds)

<matplotlib.legend.Legend at 0x7f5cd9dfb8b0>

Another way to see this is look at the autocovariance function of the implied process, which we

can recover by the inverse fourier transform as discussed in class:

γk =

∫ π

−π
fY (ω)eiωk. (13)

The HP filter induces complex dynamics into the process!
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Figure 1: Spectrum Associated with HP filtering an AR(1)
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from scipy.integrate import quad

H = 20

really_small = 1e-8

acf = [quad(lambda omega:

2*f(omega)*np.cos(omega*k), really_small, np.pi)[0]

for k in np.arange(H)]

plt.plot(acf)

phi = 0.95

acf = [ phi**j / (1-phi**2) for j in np.arange(H)]

plt.plot(acf, linestyle=’dashed’)

Figure 2: ACF of AR(1) vs. ACF of HP filtered Component
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