
Econ 616: Problem Set 2

Ed Herbst

Due, Tuesday, March 11th

Problem 1

Consider the following AR(1) process, initialized in the infinite past:

yt = θyt−1 + ϵt, (1)

where ϵt ∼ iidN (0, 1).

1. Suppose you have a sample of observations Y T = {y0, y1, . . . , yT }. Derive the conditional

likelihood function p(Y T |θ, y0) for θ based on Y T .

2. Consider the following prior for θ: θ ∼ N (0, τ2). Show that the posterior distribution of θ is

of the form

θ|Y T ∼ N (θ̃T , ṼT ), (2)

where

θ̃T =
(∑

y2t−1 + τ−2
)−1∑

ytyt−1 (3)

ṼT =
(∑

y2t−1 + τ−2
)−1

(4)

3. Suppose the goal is to forecast yT+2 based on information up until time T , given by the

sample Y T . Show that under the loss function

L(yT+2, ŷT+2T ) = (yT+2 − ŷT+2|T )
2 (5)

where yT+2 is the actual value and ŷT+2|T is the predicted value, the optimal (minimizing

posterior expected loss) forecast is given by

ŷoptT+2|T = E[yT+2|Y T ]. (6)
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4. Using the results from (ii), calculate the optimal two-step ahead predictor for the estimated

AR(1) model. Notice that

E[yT+2|Y T ] =

∫
[yT+2|θ, Y T ]p(θ|Y T )dθ. (7)

5. Suppose that data are generated from an AR(2) model

yt = ϕ1yt−1 + ϕ2yt−2 + ϵt. (8)

but the Bayesian bases his/her analysis on an AR(1) model. What happens to the mean

and variance of the posterior distribution in (iv) as T −→ ∞.

Problem 2

Consider the following two models for the time series Y T = {y1, . . . , yT }:

M0 : yt = ut, ut ∼ iidN (0, 1), (9)

M1 : yt = θyt−1 + ut, ut ∼ iidN (0, 1). (10)

You may assume that y0 = 0.

1. Derive the joint probability density function (pdf) for Y T conditional on the initial observa-

tion and the model parameters for M0 and M1.

2. Define the likelihood ratio statistic

LRT = 2 ln
maxθ∈Θ p(Y T |θ,M1)

p(Y T |M0)
, (11)

where p(Y T |M0) and p(Y T |θ,M1) denote the pdf’s derived in (i). Derive the limit distribu-

tion of LRT under the assumption that data have been generated from M0.

Now consider the following prior distribution for θ in M1: θ ∼ N (0, τ2).

1. Derive the posterior distribution of θ under conditional on M1.

2. Derive the marginal data density for model M1

p(Y T |M1) =

∫
p(Y T |θ,M1)p(θ)dθ. (12)

3. Suppose the prior probabilities for models M0 and M1 are equal to 0.5. Find an expression

in terms of y1, . . . , yT for the log posterior odds of M1 versus M0:

LPOT = ln
{M1|Y T }
{M0|Y T }

.
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4. Suppose that Y T has been generated from M0. What happens to to LPOT as T −→ ∞.

Compare the asymptotic behavior of LPOT and LRT and discuss some of the differences

between Bayesian and classical testing.

Problem 3

This problem set draws on a few influential papers about the effects of fiscal policy.

• Blanchard, O., & Perotti, R. (2002). An empirical characterization of the dynamic effects of

changes in government spending and taxes on output. The Quarterly Journal of Economics,

117(4), 1329–1368. http://dx.doi.org/10.1162/003355302320935043

• Mertens, K., & Ravn, M. O. (2014). A reconciliation of svar and narrative estimates of tax

multipliers. Journal of Monetary Economics, 68, 1–19. http://dx.doi.org/10.1016/j.

jmoneco.2013.04.004

Our goal is to assess the effects of an unanticipated change in taxes on aggregate output. To do

this, we’re going to use a structural VAR, identified in two ways. I have provided skeleton code

for this exercise using either Matlab (see attached files) or other programming language.

Get the data, detrend it

Load the data file mertens_ravn.csv. The first column refers to the (quarterly) date, while sec-

ond through fourth column refers to the log of tax revenues (Tt), government spending (Gt) and

output Yt. The first column refers to a fiscal surprise which we’ll use later.

We’re going to concentrate of the sample that Blanchard and Perotti use, 1960 - 1997. Blanchard

and Perotti include three deterministic trends in their VAR. To keep things simple, we’re going to

pretreat–i.e., remove the trends before estimation–the data. (Why might this be a bad idea?) The

three trends are: a linear trend, a quadratic trend, and a dummy observation for 1975:Q2, when

there was a large tax cut.

(In the provided example file, fill in “Code Exercise: Part 1”).

Run a reduced-form VAR

Let the detrended data be denoted by yt = [tt, gt, yt]
′. Posit that the dynamics of this model fol-

low a VAR(4):

yt = x′tΦ+ ut, ut ∼ N(0,Σ). (13)
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Run a VAR(4) on your detrended data. In particular, obtain maximum likelihood estimates, Φ̂,

and Σ̂.

Go from a reduced form to a structural model.

As we discussed in class, the reduced form model does not allow us to conduct structural infer-

ence. Blanchard and Perotti propose to identify the structural in the following way. Consider the

VAR residuals ut = [utt, u
g
t , u

y
t ]. You can think of these as the components of the VAR observables

that are not predetermined–the interesting part. Blanchard and Perotti write the relationship be-

tween the reduced form residuals and the structural shocks in the following system:

utt = a1u
y
t + a2σge

g
t + σte

t
t (14)

ugt = b1u
y
t + b2σte

t
t + σge

g
t (15)

uyt = c1u
t
t + c2u

g
t + σye

y
t . (16)

Blanchard and Perotti make two assumptions in order to solve the identifcation problem. Specif-

ically, they assume particular values for a1, a2, and b2. What are the values that they assume?

Why?

Write the above the set of equations in matrix notion:

Fuut = Fϵϵt. (17)

What is the relationshp between Fu, Fϵ, and Σ? With the Blanchard and Perotti coefficient as-

sumptions, what is the number of free parameters to estimated, and what are the number of equa-

tions?

Next, write a matlab function that takes arguments a1, a2, b1, b2, b3, σt, σg, σy, and Σ. Using the

relationship derived above, compute the difference between the covariance matrix implied by Fu

and Fϵ and Σ. Complete the code in objective.m.

Now consider the structural representation:

y′tA0 = x′tA+ + ϵ′t, ϵtN(0, I). (18)

What is the relationship between A0 and (Fu, Fϵ)? Using your results from fsolve, construct A0.

With your estimates of A0 and Φ, construct the impulse response function to an (negative) tax

shock. To interpret it as a multiplier–dollar change in GDP as the ratio of dollar change in tax

revenue)–rescale the shock so that it’s a negative 1\shock, by the average ratio of federal tax rev-

enues to GDP of 17.5%. Plot the impulse response, and compare it to Blanchard and Perotti.
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A Bayesian Approach

We previously did everything at the MLE. Now, let’s add uncertainty using a Bayesian SVAR.

Our goal will be to construct draws {Φi,Σi}nsim
i=1 from the posterior distribution of the reduced

form VAR parameters when we use a Minnesota Prior.

We’re going to use code from the following handbook chapter to construct the dummy observa-

tions for the Minnesota Prior.

• Del Negro, M., & Schorfheide, F. (2011). Bayesian Macroeconometrics. In H. v. Dijk, G.

Koop, & J. Geweke (Eds.), Handbook of Bayesian Econometrics (pp. 293–389). : Oxford

University Press.

In the code, pick some values for hyper parameters of the Minnesota Prior. Next we’re going to

construct our posterior sampler. Make sure your actual Y and X matrices are called YYact and

XXact. Then produce nsim draws from the posterior using the code in ps3.m.

For each draw in Φi,Σi, construct the structural impulse response to the tax shock, and plot the

median an 90% pointwise probability bands.

Bonus: Put a prior distribution of a1, a2, and b1–Why are they not updated by the data?–and

redo the exercise.

Identification using a proxy

Consider identifing the effects of a tax shock using a proxy. Let’s look at the “Tax Narrative”

shock constructed by Mertens and Ravn.

<ipython-input-6-3ec69544cf50>:4: UserWarning: Could not infer format, so each element will be parsed individually, falling back to ‘dateutil‘. To ensure parsing is consistent and as-expected, please specify a format.

mr = p.read_csv(’mertens_ravn.csv’,parse_dates=True,index_col=[’Date’])#,sep=’\t’,index_col=[’Date’],parse_dates=True)
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Let’s use the Proxy SVAR approach to estimate the impulse response to a tax shock. Using the

maximum likelihood estimates, Φ̂, Σ̂, identify the tax shock effect using the proxy–that is, assume

that our proxy is a noisy measure of the true tax shock. Is this what Mertens and Ravn assume?

Use the file mr.m to construct the Mertens and Ravn matrix B. What is the relationship between

A0 and B?

Now plot IRF. Is different than your previous one? How? What might be some issues with this

identification strategy?

As a final exercise, rather than use the Mertens and Ravn algorithm, simply place the tax shock

in the VAR. Using a cholesky identification scheme, can you construct the impulse response to a

tax shock? (Where should the series be ordered in the VAR? Why?)
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