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Some References

These lectures use material from our joint work:

• “Tempered Particle Filtering,” 2016, PIER Working Paper, 16-017

• Bayesian Estimation of DSGE Models, 2015, Princeton University Press

• “Sequential Monte Carlo Sampling for DSGE Models,” 2014, Journal of Econometrics
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Sequential Monte Carlo (SMC) Methods

SMC can help to

Lecture 1

• approximate the posterior of θ: Chopin (2002) ... Durham and Geweke (2013) ... Creal
(2007), Herbst and Schorfheide (2014)

Lecture 2

• approximate the likelihood function (particle filtering): Gordon, Salmond, and Smith
(1993) ... Fernandez-Villaverde and Rubio-Ramirez (2007)

• or both: SMC 2: Chopin, Jacob, and Papaspiliopoulos (2012) ... Herbst and Schorfheide
(2015)
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Lecture 2
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Approximating the Likelihood Function

• DSGE models are inherently nonlinear.

• Sometimes linear approximations are sufficiently accurate...

• but in other applications nonlinearities may be important:

• asset pricing;

• borrowing constraints;

• zero lower bound on nominal interest rates;

• ...

• Nonlinear state-space representation requires nonlinear filter:

yt = Ψ(st , t; θ) + ut , ut ∼ Fu(·; θ)

st = Φ(st−1, εt ; θ), εt ∼ Fε(·; θ).
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Particle Filters

• There are many particle filters...

• We will focus on three types:

• Bootstrap PF

• A generic PF

• A conditionally-optimal PF
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Filtering - General Idea

• State-space representation of nonlinear DSGE model

Measurement Eq. : yt = Ψ(st , t; θ) + ut , ut ∼ Fu(·; θ)

State Transition : st = Φ(st−1, εt ; θ), εt ∼ Fε(·; θ).

• Likelihood function:

p(Y1:T |θ) =
T∏
t=1

p(yt |Y1:t−1, θ)

• A filter generates a sequence of conditional distributions st |Y1:t .
• Iterations:

• Initialization at time t − 1: p(st−1|Y1:t−1, θ)
• Forecasting t given t − 1:

1 Transition equation: p(st |Y1:t−1, θ) =
∫
p(st |st−1,Y1:t−1, θ)p(st−1|Y1:t−1, θ)dst−1

2 Measurement equation: p(yt |Y1:t−1, θ) =
∫
p(yt |st ,Y1:t−1, θ)p(st |Y1:t−1, θ)dst

• Updating with Bayes theorem. Once yt becomes available:

p(st |Y1:t , θ) = p(st |yt ,Y1:t−1, θ) =
p(yt |st ,Y1:t−1, θ)p(st |Y1:t−1, θ)

p(yt |Y1:t−1, θ)
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Bootstrap Particle Filter

1 Initialization. Draw the initial particles from the distribution s j0
iid∼ p(s0) and set W j

0 = 1,
j = 1, . . . ,M.

2 Recursion. For t = 1, . . . ,T :

1 Forecasting st . Propagate the period t − 1 particles {s jt−1,W
j
t−1} by iterating the

state-transition equation forward:

s̃ jt = Φ(s jt−1, ε
j
t ; θ), εjt ∼ Fε(·; θ). (1)

An approximation of E[h(st)|Y1:t−1, θ] is given by

ĥt,M =
1

M

M∑
j=1

h(s̃ jt )W
j
t−1. (2)
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Bootstrap Particle Filter

1 Initialization.

2 Recursion. For t = 1, . . . ,T :

1 Forecasting st .
2 Forecasting yt . Define the incremental weights

w̃ j
t = p(yt |s̃ jt , θ). (3)

The predictive density p(yt |Y1:t−1, θ) can be approximated by

p̂(yt |Y1:t−1, θ) =
1

M

M∑
j=1

w̃ j
tW

j
t−1. (4)

If the measurement errors are N(0,Σu) then the incremental weights take the form

w̃ j
t = (2π)−n/2|Σu|−1/2 exp

{
− 1

2

(
yt −Ψ(s̃ jt , t; θ)

)′
Σ−1

u

(
yt −Ψ(s̃ jt , t; θ)

)}
, (5)

where n here denotes the dimension of yt .
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Bootstrap Particle Filter

1 Initialization.

2 Recursion. For t = 1, . . . ,T :

1 Forecasting st .
2 Forecasting yt . Define the incremental weights

w̃ j
t = p(yt |s̃ jt , θ). (6)

3 Updating. Define the normalized weights

W̃ j
t =

w̃ j
tW

j
t−1

1
M

∑M
j=1 w̃

j
tW

j
t−1

. (7)

An approximation of E[h(st)|Y1:t , θ] is given by

h̃t,M =
1

M

M∑
j=1

h(s̃ jt )W̃
j
t . (8)

E. Herbst and F. Schorfheide SMC for DSGE Models



Bootstrap Particle Filter

1 Initialization.

2 Recursion. For t = 1, . . . ,T :

1 Forecasting st .
2 Forecasting yt .
3 Updating.
4 Selection (Optional). Resample the particles via multinomial resampling. Let {s jt}Mj=1

denote M iid draws from a multinomial distribution characterized by support points and
weights {s̃ jt , W̃ j

t } and set W j
t = 1 for j =, 1 . . . ,M.

An approximation of E[h(st)|Y1:t , θ] is given by

h̄t,M =
1

M

M∑
j=1

h(s jt )W
j
t . (9)
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Likelihood Approximation

• The approximation of the log likelihood function is given by

ln p̂(Y1:T |θ) =
T∑
t=1

ln

 1

M

M∑
j=1

w̃ j
tW

j
t−1

 . (10)

• One can show that the approximation of the likelihood function is unbiased.

• This implies that the approximation of the log likelihood function is downward biased.
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The Role of Measurement Errors

• Measurement errors may not be intrinsic to DSGE model.

• Bootstrap filter needs non-degenerate p(yt |st , θ) for incremental weights to be well
defined.

• Decreasing the measurement error variance Σu, holding everything else fixed, increases the
variance of the particle weights, and reduces the accuracy of Monte Carlo approximation.
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Generic Particle Filter – Recursion

1 Forecasting st . Draw s̃ jt from density gt(s̃t |s jt−1, θ) and define

ωj
t =

p(s̃ jt |s jt−1, θ)

gt(s̃
j
t |s jt−1, θ)

. (11)

An approximation of E[h(st)|Y1:t−1, θ] is given by

ĥt,M =
1

M

M∑
j=1

h(s̃ jt )ωj
tW

j
t−1. (12)

2 Forecasting yt . Define the incremental weights

w̃ j
t = p(yt |s̃ jt , θ)ωj

t . (13)

The predictive density p(yt |Y1:t−1, θ) can be approximated by

p̂(yt |Y1:t−1, θ) =
1

M

M∑
j=1

w̃ j
tW

j
t−1. (14)

3 Updating / Selection. Same as BS PF
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Adapting the Generic PF

• Conditionally-optimal importance distribution:

gt(s̃t |s jt−1) = p(s̃t |yt , s jt−1).

This is the posterior of st given s jt−1. Typically infeasible, but a good benchmark.

• Approximately conditionally-optimal distributions: from linearize version of DSGE model
or approximate nonlinear filters.

• Conditionally-linear models: do Kalman filter updating on a subvector of st . Example:

yt = Ψ0(mt) + Ψ1(mt)t + Ψ2(mt)st + ut , ut ∼ N(0,Σu),

st = Φ0(mt) + Φ1(mt)st−1 + Φε(mt)εt , εt ∼ N(0,Σε),

where mt follows a discrete Markov-switching process.
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Next Steps

• We will now apply PFs to linearized DSGE models.

• This allows us to compare the Monte Carlo approximation to the “truth.”

• Small-scale New Keynesian DSGE model

• Smets-Wouters model
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Illustration 1: Small-Scale DSGE Model

Parameter Values For Likelihood Evaluation

Parameter θm θl Parameter θm θl

τ 2.09 3.26 κ 0.98 0.89
ψ1 2.25 1.88 ψ2 0.65 0.53
ρr 0.81 0.76 ρg 0.98 0.98
ρz 0.93 0.89 r (A) 0.34 0.19
π(A) 3.16 3.29 γ(Q) 0.51 0.73
σr 0.19 0.20 σg 0.65 0.58
σz 0.24 0.29 ln p(Y |θ) -306.5 -313.4
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Likelihood Approximation

ln p̂(yt |Y1:t−1, θ
m) vs. ln p(yt |Y1:t−1, θ

m)
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Notes: The results depicted in the figure are based on a single run of the bootstrap PF (dashed,
M = 40, 000), the conditionally-optimal PF (dotted, M = 400), and the Kalman filter (solid).
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Filtered State

Ê[ĝt |Y1:t , θ
m] vs. E[ĝt |Y1:t , θ

m]

1985 1990 1995 2000
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Notes: The results depicted in the figure are based on a single run of the bootstrap PF (dashed,
M = 40, 000), the conditionally-optimal PF (dotted, M = 400), and the Kalman filter (solid).
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Distribution of Log-Likelihood Approximation Errors

Bootstrap PF: θm vs. θl
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Notes: Density estimate of ∆̂1 = ln p̂(Y1:T |θ)− ln p(Y1:T |θ) based on Nrun = 100 runs of the
PF. Solid line is θ = θm; dashed line is θ = θl (M = 40, 000).
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Distribution of Log-Likelihood Approximation Errors

θm: Bootstrap vs. Cond. Opt. PF
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Notes: Density estimate of ∆̂1 = ln p̂(Y1:T |θ)− ln p(Y1:T |θ) based on Nrun = 100 runs of the
PF. Solid line is bootstrap particle filter (M = 40, 000); dotted line is conditionally optimal
particle filter (M = 400). E. Herbst and F. Schorfheide SMC for DSGE Models



Summary Statistics for Particle Filters

Bootstrap Cond. Opt. Auxiliary
Number of Particles M 40,000 400 40,000
Number of Repetitions 100 100 100

High Posterior Density: θ = θm

Bias ∆̂1 -1.39 -0.10 -2.83

StdD ∆̂1 2.03 0.37 1.87

Bias ∆̂2 0.32 -0.03 -0.74
Low Posterior Density: θ = θl

Bias ∆̂1 -7.01 -0.11 -6.44

StdD ∆̂1 4.68 0.44 4.19

Bias ∆̂2 -0.70 -0.02 -0.50

Notes: ∆̂1 = ln p̂(Y1:T |θ)− ln p(Y1:T |θ) and ∆̂2 = exp[ln p̂(Y1:T |θ)− ln p(Y1:T |θ)]− 1. Results
are based on Nrun = 100 runs of the particle filters.
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Great Recession and Beyond

Mean of Log-likelihood Increments ln p̂(yt |Y1:t−1, θ
m)

2003 2006 2009 2012
−300
−250
−200
−150
−100
−50

0

Notes: Solid lines represent results from Kalman filter. Dashed lines correspond to bootstrap
particle filter (M = 40, 000) and dotted lines correspond to conditionally-optimal particle filter
(M = 400). Results are based on Nrun = 100 runs of the filters.
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Great Recession and Beyond

Log Standard Dev of Log-Likelihood Increments

2003 2006 2009 2012
-5

-3

-1
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Notes: Solid lines represent results from Kalman filter. Dashed lines correspond to bootstrap
particle filter (M = 40, 000) and dotted lines correspond to conditionally-optimal particle filter
(M = 400). Results are based on Nrun = 100 runs of the filters.
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SW Model: Distr. of Log-Likelihood Approximation Errors

BS (M = 400, 000) versus CO (M = 4, 000)
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Notes: Density estimates of ∆̂1 = ln p̂(Y |θ)− ln p(Y |θ) based on Nrun = 100. Solid densities
summarize results for the bootstrap (BS) particle filter; dashed densities summarize results for
the conditionally-optimal (CO) particle filter.
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SW Model: Summary Statistics for Particle Filters

Bootstrap Cond. Opt.
Number of Particles M 40,000 400,000 4,000 40,000
Number of Repetitions 100 100 100 100

High Posterior Density: θ = θm

Bias ∆̂1 -238.49 -118.20 -8.55 -2.88

StdD ∆̂1 68.28 35.69 4.43 2.49

Bias ∆̂2 -1.00 -1.00 -0.87 -0.41
Low Posterior Density: θ = θl

Bias ∆̂1 -253.89 -128.13 -11.48 -4.91

StdD ∆̂1 65.57 41.25 4.98 2.75

Bias ∆̂2 -1.00 -1.00 -0.97 -0.64

Notes: ∆̂1 = ln p̂(Y1:T |θ)− ln p(Y1:T |θ) and ∆̂2 = exp[ln p̂(Y1:T |θ)− ln p(Y1:T |θ)]− 1. Results
are based on Nrun = 100.
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Tempered Particle Filter

• Use sequence of distributions between the forecast and updated state distributions.

• Candidates? Well, the PF will work arbitrarily well when Σu →∞.

• Reduce measurement error variance from an inflated initial level Σu(θ)/φ1 to the nominal
level Σu(θ).

E. Herbst and F. Schorfheide SMC for DSGE Models



The Key Idea

• Define

pn(yt |st , θ) ∝ φd/2
n |Σu(θ)|−1/2 exp

{
− 1

2
(yt −Ψ(st , t; θ))′

×φnΣ−1
u (θ)(yt −Ψ(st , t; θ))

}
,

where:

φ1 < φ2 < . . . < φNφ
= 1.

• Bridge posteriors given st−1:

pn(st |yt , st−1, θ) ∝ pn(yt |st , θ)p(st |st−1, θ).

• Bridge posteriors given Y1:t−1:

pn(st |Y1:t) =

∫
pn(st |yt , st−1, θ)p(st−1|Y1:t−1)dst−1.
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Algorithm Overview

• For each t we start with the BS-PF iteration by simulating the state-transition equation
forward.

• Incremental weights are obtained based on inflated measurement error variance Σu/φ1.

• Then we start the tempering iterations...

• After the tempering iterations are completed we proceed to t + 1...
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Overview

• If Nφ = 1, this collapses to the Bootstrap particle filter.

• For each time period t, we embed a “static” SMC sampler used for parameter estimation
[See Lecture 1]:

Iterate over n = 1, . . . ,Nφ:

• Correction step: change particle weights (importance sampling)

• Selection step: equalize particle weights (resampling of particles)

• Mutation step: change particle values (based on Markov transition kernel generated with
Metropolis-Hastings algorithm)

• Each step approximates the same
∫
h(st)pn(st |Y1:t , θ)dst .
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An Illustration: pn(st |Y1:t), n = 1, . . . ,Nφ.
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Choice of φn

• Based on Geweke and Frischknecht (2014).

• Express post-correction inefficiency ratio as

InEff(φn) =
1
M

∑M
j=1 exp[−2(φn − φn−1)ej,t ](

1
M

∑M
j=1 exp[−(φn − φn−1)ej,t ]

)2

where

ej,t =
1

2
(yt −Ψ(s j,n−1

t , t; θ))′Σ−1
u (yt −Ψ(s j,n−1

t , t; θ)).

• Pick target ratio r∗ and solve equation InEff(φ∗n) = r∗ for φ∗n.
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Small-Scale Model: PF Summary Statistics

BSPF TPF
Number of Particles M 40k 4k 4k 40k 40k
Target Ineff. Ratio r∗ 2 3 2 3

High Posterior Density: θ = θm

Bias -1.4 -0.9 -1.5 -0.3 -.05
StdD 1.9 1.4 1.7 0.4 0.6

T−1
∑T

t=1 Nφ,t 1.0 4.3 3.2 4.3 3.2
Average Run Time (s) 0.8 0.4 0.3 4.0 3.3

Low Posterior Density: θ = θl

Bias -6.5 -2.1 -3.1 -0.3 -0.6
StdD 5.3 2.1 2.6 0.8 1.0

T−1
∑T

t=1 Nφ,t 1.0 4.4 3.3 4.4 3.3
Average Run Time (s) 1.6 0.4 0.3 3.7 2.9
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Embedding PF Likelihoods into Posterior Samplers

• Likelihood functions for nonlinear DSGE models can be approximated by the PF.

• We will now embed the likelihood approximation into a posterior sampler: PFMH
Algorithm (a special case of PMCMC).

• The book also discusses SMC 2.
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Embedding PF Likelihoods into Posterior Samplers

• Distinguish between:
• {p(Y |θ), p(θ|Y ), p(Y )}, which are related according to:

p(θ|Y ) =
p(Y |θ)p(θ)

p(Y )
, p(Y ) =

∫
p(Y |θ)p(θ)dθ

• {p̂(Y |θ), p̂(θ|Y ), p̂(Y )}, which are related according to:

p̂(θ|Y ) =
p̂(Y |θ)p(θ)

p̂(Y )
, p̂(Y ) =

∫
p̂(Y |θ)p(θ)dθ.

• Surprising result (Andrieu, Docet, and Holenstein, 2010): under certain conditions we can
replace p(Y |θ) by p̂(Y |θ) and still obtain draws from p(θ|Y ).
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PFMH Algorithm

For i = 1 to N:

1 Draw ϑ from a density q(ϑ|θi−1).

2 Set θi = ϑ with probability

α(ϑ|θi−1) = min

{
1,

p̂(Y |ϑ)p(ϑ)/q(ϑ|θi−1)

p̂(Y |θi−1)p(θi−1)/q(θi−1|ϑ)

}
and θi = θi−1 otherwise. The likelihood approximation p̂(Y |ϑ) is computed using a
particle filter.
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Small-Scale DSGE: Accuracy of MH Approximations

• Results are based on Nrun = 20 runs of the PF-RWMH-V algorithm.

• Each run of the algorithm generates N = 100, 000 draws and the first N0 = 50, 000 are
discarded.

• The likelihood function is computed with the Kalman filter (KF), bootstrap particle filter
(BS-PF, M = 40, 000) or conditionally-optimal particle filter (CO-PF, M = 400).

• “Pooled” means that we are pooling the draws from the Nrun = 20 runs to compute
posterior statistics.
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Autocorrelation of PFMH Draws
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Notes: The figure depicts autocorrelation functions computed from the output of the 1 Block
RWMH-V algorithm based on the Kalman filter (solid), the conditionally-optimal particle filter
(dashed) and the bootstrap particle filter (solid with dots).

E. Herbst and F. Schorfheide SMC for DSGE Models



Small-Scale DSGE: Accuracy of MH Approximations

Posterior Mean (Pooled) Inefficiency Factors Std Dev of Means
KF CO-PF BS-PF KF CO-PF BS-PF KF CO-PF BS-PF

τ 2.63 2.62 2.64 66.17 126.76 1360.22 0.020 0.028 0.091
κ 0.82 0.81 0.82 128.00 97.11 1887.37 0.007 0.006 0.026
ψ1 1.88 1.88 1.87 113.46 159.53 749.22 0.011 0.013 0.029
ψ2 0.64 0.64 0.63 61.28 56.10 681.85 0.011 0.010 0.036
ρr 0.75 0.75 0.75 108.46 134.01 1535.34 0.002 0.002 0.007
ρg 0.98 0.98 0.98 94.10 88.48 1613.77 0.001 0.001 0.002
ρz 0.88 0.88 0.88 124.24 118.74 1518.66 0.001 0.001 0.005
r (A) 0.44 0.44 0.44 148.46 151.81 1115.74 0.016 0.016 0.044
π(A) 3.32 3.33 3.32 152.08 141.62 1057.90 0.017 0.016 0.045
γ(Q) 0.59 0.59 0.59 106.68 142.37 899.34 0.006 0.007 0.018
σr 0.24 0.24 0.24 35.21 179.15 1105.99 0.001 0.002 0.004
σg 0.68 0.68 0.67 98.22 64.18 1490.81 0.003 0.002 0.011
σz 0.32 0.32 0.32 84.77 61.55 575.90 0.001 0.001 0.003
ln p̂(Y ) -357.14 -357.17 -358.32 0.040 0.038 0.949
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Computational Considerations

• We implement the PFMH algorithm on a single machine, utilizing up to twelve cores.

• For the small-scale DSGE model it takes 30:20:33 [hh:mm:ss] hours to generate 100,000
parameter draws using the bootstrap PF with 40,000 particles. Under the
conditionally-optimal filter we only use 400 particles, which reduces the run time to
00:39:20 minutes.
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