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Some References

These lectures use material from our joint work:

• “Tempered Particle Filtering,” 2016, PIER Working Paper, 16-017

• Bayesian Estimation of DSGE Models, 2015, Princeton University Press

• “Sequential Monte Carlo Sampling for DSGE Models,” 2014, Journal of Econometrics
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Some Background

• DSGE model: dynamic model of the macroeconomy, indexed by θ – vector of preference
and technology parameters. Used for forecasting, policy experiments, interpreting past
events.

• Bayesian analysis of DSGE models:

p(θ|Y ) =
p(Y |θ)p(θ)

p(Y )
∝ p(Y |θ)p(θ).

• Computational hurdles: numerical solution of model leads to state-space representation
=⇒ likelihood approximation =⇒ posterior sampler.

• “Standard” approach for (linearized) models (Schorfheide, 2000; Otrok, 2001):
• Model solution: log-linearize and use linear rational expectations system solver.
• Evaluation of p(Y |θ): Kalman filter
• Posterior draws θi : MCMC
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Sequential Monte Carlo (SMC) Methods

SMC can help to

Lecture 1

• approximate the posterior of θ: Chopin (2002) ... Durham and Geweke (2013) ... Creal
(2007), Herbst and Schorfheide (2014)

Lecture 2

• approximate the likelihood function (particle filtering): Gordon, Salmond, and Smith
(1993) ... Fernandez-Villaverde and Rubio-Ramirez (2007)

• or both: SMC 2: Chopin, Jacob, and Papaspiliopoulos (2012) ... Herbst and Schorfheide
(2015)
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Lecture 1
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Sampling from Posterior

• DSGE model posteriors are often non-elliptical, e.g., multimodal posteriors may arise

because it is difficult to

• disentangle internal
and external
propagation
mechanisms;

• disentangle the
relative importance of
shocks.
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• Economic Example: is wage growth persistent because

1 wage setters find it very costly to adjust wages?

2 exogenous shocks affect the substitutability of labor inputs and hence markups?
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Sampling from Posterior

• If posterior distributions are irregular, standard MCMC methods can be inaccurate
(examples will follow).

• SMC samplers often generate more precise approximations of posteriors in the same
amount of time.

• SMC can be parallelized.

• SMC = importance sampling on steroids =⇒ We will first review importance sampling.
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Importance Sampling

• Approximate π(·) by using a different, tractable density g(θ) that is easy to sample from.

• For more general problems, posterior density may be unnormalized. So we write

π(θ) =
p(Y |θ)p(θ)

p(Y )
=

f (θ)∫
f (θ)dθ

.

• Importance sampling is based on the identity

Eπ[h(θ)] =

∫
h(θ)π(θ)dθ =

∫
Θ
h(θ) f (θ)

g(θ)g(θ)dθ∫
Θ

f (θ)
g(θ)g(θ)dθ

.

• (Unnormalized) importance weight:

w(θ) =
f (θ)

g(θ)
.
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Importance Sampling

1 For i = 1 to N, draw θi iid∼ g(θ) and compute the unnormalized importance weights

w i = w(θi ) =
f (θi )

g(θi )
.

2 Compute the normalized importance weights

W i =
w i

1
N

∑N
i=1 w

i
.

An approximation of Eπ[h(θ)] is given by

h̄N =
1

N

N∑
i=1

W ih(θi ).
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Illustration

If θi ’s are draws from g(·) then

Eπ[h] ≈
1
N

∑N
i=1 h(θi )w(θi )

1
N

∑N
i=1 w(θi )

, w(θ) =
f (θ)

g(θ)
.
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Accuracy

• Since we are generating iid draws from g(θ), it’s fairly straightforward to derive a CLT:

√
N(h̄N − Eπ[h]) =⇒ N

(
0,Ω(h)

)
, where Ω(h) = Vg [(π/g)(h − Eπ[h])].

• Using a crude approximation (see, e.g., Liu (2008)), we can factorize Ω(h) as follows:

Ω(h) ≈ Vπ[h]
(
Vg [π/g ] + 1

)
.

The approximation highlights that the larger the variance of the importance weights, the
less accurate the Monte Carlo approximation relative to the accuracy that could be
achieved with an iid sample from the posterior.

• Users often monitor

ESS = N
Vπ[h]

Ω(h)
≈ N

1 + Vg [π/g ]
.
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From Importance Sampling to Sequential Importance Sampling

• In general, it’s hard to construct a good proposal density g(θ),

• especially if the posterior has several peaks and valleys.

• Idea - Part 1: it might be easier to find a proposal density for

πn(θ) =
[p(Y |θ)]φnp(θ)∫
[p(Y |θ)]φnp(θ)dθ

=
fn(θ)

Zn
.

at least if φn is close to zero.

• Idea - Part 2: We can try to turn a proposal density for πn into a proposal density for πn+1

and iterate, letting φn −→ φN = 1.
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Illustration: Tempered Posteriors of θ1

θ1
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πn(θ) =
[p(Y |θ)]φnp(θ)∫
[p(Y |θ)]φnp(θ)dθ

=
fn(θ)

Zn
, φn =

(
n

Nφ

)λ
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SMC Algorithm: A Graphical Illustration
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• πn(θ) is represented by a swarm of particles {θi
n,W

i
n}N

i=1:

h̄n,N =
1

N

N∑
i=1

W i
nh(θi

n)
a.s.−→ Eπn [h(θn)].

• C is Correction; S is Selection; and M is Mutation.
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SMC Algorithm

1 Initialization. (φ0 = 0). Draw the initial particles from the prior: θi
1

iid∼ p(θ) and W i
1 = 1,

i = 1, . . . ,N.

2 Recursion. For n = 1, . . . ,Nφ,

1 Correction. Reweight the particles from stage n − 1 by defining the incremental weights

w̃ i
n = [p(Y |θi

n−1)]φn−φn−1 (1)

and the normalized weights

W̃ i
n =

w̃ i
nW

i
n−1

1
N

∑N
i=1 w̃

i
nW i

n−1

, i = 1, . . . ,N. (2)

An approximation of Eπn [h(θ)] is given by

h̃n,N =
1

N

N∑
i=1

W̃ i
nh(θi

n−1). (3)

2 Selection.
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SMC Algorithm

1 Initialization.

2 Recursion. For n = 1, . . . ,Nφ,

1 Correction.
2 Selection. (Optional Resampling) Let {θ̂}N

i=1 denote N iid draws from a multinomial
distribution characterized by support points and weights {θi

n−1, W̃
i
n}N

i=1 and set W i
n = 1.

An approximation of Eπn [h(θ)] is given by

ĥn,N =
1

N

N∑
i=1

W i
nh(θ̂i

n). (4)

3 Mutation. Propagate the particles {θ̂i ,W
i
n} via NMH steps of a MH algorithm with

transition density θi
n ∼ Kn(θn|θ̂i

n; ζn) and stationary distribution πn(θ). An approximation of
Eπn [h(θ)] is given by

h̄n,N =
1

N

N∑
i=1

h(θi
n)W i

n . (5)
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Remarks

• Correction Step:
• reweight particles from iteration n − 1 to create importance sampling approximation of

Eπn [h(θ)]

• Selection Step: the resampling of the particles
• (good) equalizes the particle weights and thereby increases accuracy of subsequent

importance sampling approximations;
• (not good) adds a bit of noise to the MC approximation.

• Mutation Step: changes particle values
• adapts particles to posterior πn(θ);
• imagine we don’t do it: then we would be using draws from prior p(θ) to approximate

posterior π(θ), which can’t be good!
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More on Transition Kernel in Mutation Step

• Transition kernel Kn(θ|θ̂n−1; ζn): generated by running M steps of a Metropolis-Hastings
algorithm.

• Lessons from DSGE model MCMC:
• blocking of parameters can reduces persistence of Markov chain;
• mixture proposal density avoids “getting stuck.”

• Blocking: Partition the parameter vector θn into Nblocks equally sized blocks, denoted by
θn,b, b = 1, . . . ,Nblocks . (We generate the blocks for n = 1, . . . ,Nφ randomly prior to
running the SMC algorithm.)

• Example: random walk proposal density:

ϑb|(θi
n,b,m−1, θ

i
n,−b,m,Σ

∗
n,b) ∼ N

(
θi

n,b,m−1, c
2
n Σ∗

n,b

)
.
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Adaptive Choice of ζn = (Σ∗n, cn)

• Infeasible adaption:
• Let Σ∗

n = Vπn [θ].
• Adjust scaling factor according to

cn = cn−1f
(
1− Rn−1(ζn−1)

)
,

where Rn−1(·) is population rejection rate from iteration n − 1 and

f (x) = 0.95 + 0.10
e16(x−0.25)

1 + e16(x−0.25)
.

• Feasible adaption – use output from stage n − 1 to replace ζn by ζ̂n:

• Use particle approximations of Eπn [θ] and Vπn [θ] based on {θi
n−1, W̃

i
n}N

i=1.

• Use actual rejection rate from stage n − 1 to calculate ĉn = ĉn−1f
(
R̂n−1(ζ̂n−1)

)
.
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More on Resampling

• So far, we have used multinomial resampling. It’s fairly intuitive and it is straightforward
to obtain a CLT.

• But: multinominal resampling is not particularly efficient.

• The Herbst-Schorfheide book contains a section on alternative resampling schemes
(stratified resampling, residual resampling...)

• These alternative techniques are designed to achieve a variance reduction.

• Most resampling algorithms are not parallelizable because they rely on the normalized
particle weights.
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Application 1: Small Scale New Keynesian Model

• We will take a look at the effect of various tuning choices on accuracy:

• Tempering schedule λ: λ = 1 is linear, λ > 1 is convex.

• Number of stages Nφ versus number of particles N.
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Effect of λ on Inefficiency Factors InEffN [θ̄]
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Notes: The figure depicts hairs of InEffN [θ̄] as function of λ. The inefficiency factors are
computed based on Nrun = 50 runs of the SMC algorithm. Each hair corresponds to a DSGE
model parameter.

E. Herbst and F. Schorfheide SMC for DSGE Models



Number of Stages Nφ vs Number of Particles N
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Nφ = 400, N = 250
Nφ = 200, N = 500
Nφ = 100, N = 1000

Nφ = 50, N = 2000
Nφ = 25, N = 4000

Notes: Plot of V[θ̄]/Vπ[θ] for a specific configuration of the SMC algorithm. The inefficiency
factors are computed based on Nrun = 50 runs of the SMC algorithm. Nblocks = 1, λ = 2,
NMH = 1.
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A Few Words on Posterior Model Probabilities

• Posterior model probabilities

πi,T =
πi,0p(Y1:T |Mi )∑M

j=1 πj,0p(Y1:T |Mj )

where

p(Y1:T |Mi ) =

∫
p(Y1:T |θ(i),Mi )p(θ(i)|Mi )dθ(i)

• For any model:

ln p(Y1:T |Mi ) =
T∑

t=1

ln

∫
p(yt |θ(i),Y1:t−1,Mi )p(θ(i)|Y1:t−1,Mi )dθ(i)

• Marginal data density p(Y1:T |Mi ) arises as a by-product of SMC.

E. Herbst and F. Schorfheide SMC for DSGE Models



Marginal Likelihood Approximation

• Recall w̃ i
n = [p(Y |θi

n−1)]φn−φn−1 .

• Then

1

N

N∑
i=1

w̃ i
nW

i
n−1 ≈

∫
[p(Y |θ)]φn−φn−1

pφn−1 (Y |θ)p(θ)∫
pφn−1 (Y |θ)p(θ)dθ

dθ

=

∫
p(Y |θ)φnp(θ)dθ∫
p(Y |θ)φn−1p(θ)dθ

• Thus,

Nφ∏
n=1

(
1

N

N∑
i=1

w̃ i
nW

i
n−1

)
≈
∫

p(Y |θ)p(θ)dθ.
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SMC Marginal Data Density Estimates

Nφ = 100 Nφ = 400
N Mean(ln p̂(Y )) SD(ln p̂(Y )) Mean(ln p̂(Y )) SD(ln p̂(Y ))
500 -352.19 (3.18) -346.12 (0.20)
1,000 -349.19 (1.98) -346.17 (0.14)
2,000 -348.57 (1.65) -346.16 (0.12)
4,000 -347.74 (0.92) -346.16 (0.07)

Notes: Table shows mean and standard deviation of log marginal data density estimates as a
function of the number of particles N computed over Nrun = 50 runs of the SMC sampler with
Nblocks = 4, λ = 2, and NMH = 1.
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Application 2: Estimation of Smets and Wouters (2007) Model

• Benchmark macro model, has been estimated many (many) times.

• “Core” of many larger-scale models.

• 36 estimated parameters.

• RWMH: 10 million draws (5 million discarded); SMC: 500 stages with 12,000 particles.

• We run the RWM (using a particular version of a parallelized MCMC) and the SMC
algorithm on 24 processors for the same amount of time.

• We estimate the SW model twenty times using RWM and SMC and get essentially
identical results.
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Application 2: Estimation of Smets and Wouters (2007) Model

• More interesting question: how does quality of posterior simulators change as one makes
the priors more diffuse?

• Replace Beta by Uniform distributions; increase variances of parameters with Gamma and
Normal prior by factor of 3.
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SW Model with DIFFUSE Prior: Estimation stability RWH (black) versus
SMC (red)
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A Measure of Effective Number of Draws

• Suppose we could generate iid Neff draws from posterior, then

Êπ[θ]
approx∼ N

(
Eπ[θ],

1

Neff
Vπ[θ]

)
.

• We can measure the variance of Êπ[θ] by running SMC and RWM algorithm repeatedly.

• Then,

Neff ≈
Vπ[θ]

V
[
Êπ[θ]

]
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Effective Number of Draws

SMC RWMH
Parameter Mean STD(Mean) Neff Mean STD(Mean) Neff

σl 3.06 0.04 1058 3.04 0.15 60
l -0.06 0.07 732 -0.01 0.16 177
ιp 0.11 0.00 637 0.12 0.02 19
h 0.70 0.00 522 0.69 0.03 5
Φ 1.71 0.01 514 1.69 0.04 10
rπ 2.78 0.02 507 2.76 0.03 159
ρb 0.19 0.01 440 0.21 0.08 3
ϕ 8.12 0.16 266 7.98 1.03 6
σp 0.14 0.00 126 0.15 0.04 1
ξp 0.72 0.01 91 0.73 0.03 5
ιw 0.73 0.02 87 0.72 0.03 36
µp 0.77 0.02 77 0.80 0.10 3
ρw 0.69 0.04 49 0.69 0.09 11
µw 0.63 0.05 49 0.63 0.09 11
ξw 0.93 0.01 43 0.93 0.02 8
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A Closer Look at the Posterior: Two Modes

Parameter Mode 1 Mode 2
ξw 0.844 0.962
ιw 0.812 0.918
ρw 0.997 0.394
µw 0.978 0.267
Log Posterior -804.14 -803.51

• Mode 1 implies that wage persistence is driven by extremely exogenous persistent wage
markup shocks.

• Mode 2 implies that wage persistence is driven by endogenous amplification of shocks
through the wage Calvo and indexation parameter.

• SMC is able to capture the two modes.
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A Closer Look at the Posterior: Internal ξw versus External ρw Propagation
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Stability of Posterior Computations: RWH (black) versus SMC (red)
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