Particle Filters

1 Introduction

1.1 From Linear to Nonlinear (DSGE) Models

  • While DSGE models are inherently nonlinear, the nonlinearities are often small and decision rules are approximately linear.
  • One can add certain features that generate more pronounced nonlinearities:
    • stochastic volatility;
    • markov switching coefficients;
    • asymmetric adjustment costs;
    • occasionally binding constraints.

1.2 From Linear to Nonlinear (DSGE) Models

  • Linear DSGE model leads to

    \begin{eqnarray*} y_t &=& \Psi_0(\theta) + \Psi_1(\theta)t + \Psi_2(\theta) s_t + u_t, \quad u_t \sim N(0,\Sigma_u) ,\\ s_t &=& \Phi_1(\theta)s_{t-1} + \Phi_\epsilon(\theta) \epsilon_t, \quad \epsilon_t \sim N(0,\Sigma_\epsilon). \end{eqnarray*}


  • Nonlinear DSGE model leads to

    \begin{eqnarray*} y_t &=& \Psi(s_t,t; \theta) + u_t, \quad u_t \sim F_u(\cdot;\theta) \label{eq_nlssnonlinear} \\ s_t &=& \Phi(s_{t-1},\epsilon_t; \theta), \quad \epsilon_t \sim F_\epsilon(\cdot;\theta). \end{eqnarray*}

1.3 Some nonlinear models in macro

Gust_2017: estimates a nonlinear DSGE subject to the zero lower bound.
Bocola_2016: a nonlinear model of sovereign default.
Fern_ndez_Villaverde_2009: a macroeconomic model with stochastic volatility.
Key question: how to estimate model using likelihood techniques?
Cannot use Kalman filter – instead use a particle filter.

1.4 Particle Filters

There are many particle filters…
We will focus on three types:

  1. Bootstrap PF
  2. A generic PF
  3. A conditionally-optimal PF

1.5 Filtering - General Idea

State-space representation of nonlinear DSGE model

\begin{eqnarray*} \mbox{Measurement Eq.} &:& y_t = \Psi(s_t,t; \theta) + u_t, \quad u_t \sim F_u(\cdot;\theta) \label{eq_nlssnonlinear} \\ \mbox{State Transition} &:& s_t = \Phi(s_{t-1},\epsilon_t; \theta), \quad \epsilon_t \sim F_\epsilon(\cdot;\theta). \end{eqnarray*}

Likelihood function: \(p(Y_{1:T}|\theta) = \prod_{t=1}^T {\color{red} p(y_t |Y_{1:t-1},\theta)}\)
A filter generates a sequence of conditional distributions \(s_t|Y_{1:t}\).

  1. Initialization at time \(t-1\): \(p( s_{t-1} |Y_{1:t-1}, \theta )\)
  2. Forecasting \(t\) given \(t-1\):
    • Transition equation: \(p(s_{t}|Y_{1:t-1},\theta ) = \int p(s_{t}|s_{t-1}, Y_{1:t-1} , \theta ) p (s_{t-1} |Y_{1:t-1} , \theta ) ds_{t-1}\)
    • Measurement equation: \({\color{red} p(y_{t}|Y_{1:t-1},\theta )} = \int p(y_{t}|s_{t}, Y_{1:t-1} , \theta ) p(s_{t} | Y_{1:t-1} , \theta ) ds_{t}\)
  3. Updating with Bayes theorem. Once \(y_{t}\) becomes available: \[ p(s_{t}| Y_{1:t} , \theta ) = p(s_{t} | y_{t},Y_{1:t-1} , \theta ) = \frac{ p(y_{t}|s_{t},Y_{1:t-1} , \theta ) p(s_{t} |Y_{1:t-1} , \theta )}{ p(y_{t}|Y_{1:t-1}, \theta )} \]

1.6 Bootstrap Particle Filter

\begin{enumerate} \item {\bf Initialization.} Draw the initial particles from the distribution $s_0^j \stackrel{iid}{\sim} p(s_0)$ and set $W_0^j=1$, $j=1,\ldots,M$. \item {\bf Recursion.} For $t=1,\ldots,T$: \begin{enumerate} \item {\bf Forecasting $s_t$.} Propagate the period $t-1$ particles $\{ s_{t-1}^j, W_{t-1}^j \}$ by iterating the state-transition equation forward: \be \tilde{s}_t^j = \Phi(s_{t-1}^j,\epsilon^j_t; \theta), \quad \epsilon^j_t \sim F_\epsilon(\cdot;\theta). \ee An approximation of $\mathbb{E}[h(s_t)|Y_{1:t-1},\theta]$ is given by \be \hat{h}_{t,M} = \frac{1}{M} \sum_{j=1}^M h(\tilde{s}_t^j)W_{t-1}^j. \label{eq_pfhtt1} \ee \end{enumerate}

\end{enumerate}

1.7 Bootstrap Particle Filter

\begin{enumerate} \item {\bf Initialization.} \item {\bf Recursion.} For $t=1,\ldots,T$: \begin{enumerate} \item {\bf Forecasting $s_t$.} \item {\bf Forecasting $y_t$.} Define the incremental weights \be \tilde{w}^j_t = p(y_t|\tilde{s}^j_t,\theta). \ee The predictive density $p(y_t|Y_{1:t-1},\theta)$ can be approximated by \be \hat{p}(y_t|Y_{1:t-1},\theta) = \frac{1}{M} \sum_{j=1}^M \tilde{w}^j_t W_{t-1}^j. \ee If the measurement errors are $N(0,\Sigma_u)$ then the incremental weights take the form \be\hspace{-0.2in} \tilde{w}_t^j = (2 \pi)^{-n/2} |\Sigma_u|^{-1/2} \exp \bigg\{ - \frac{1}{2} \big(y_t - \Psi(\tilde{s}^j_t,t;\theta) \big)'\Sigma_u^{-1} \big(y_t - \Psi(\tilde{s}^j_t,t;\theta)\big) \bigg\}, \label{eq_pfincrweightgaussian} \ee where $n$ here denotes the dimension of $y_t$. \end{enumerate}

\end{enumerate}

1.8 Bootstrap Particle Filter

\begin{enumerate} \item {\bf Initialization.} \item {\bf Recursion.} For $t=1,\ldots,T$: \begin{enumerate} \item {\bf Forecasting $s_t$.} \item {\bf Forecasting $y_t$.} Define the incremental weights \be \tilde{w}^j_t = p(y_t|\tilde{s}^j_t,\theta). \ee \item {\bf Updating.} Define the normalized weights \be \tilde{W}^j_t = \frac{ \tilde{w}^j_t W^j_{t-1} }{ \frac{1}{M} \sum_{j=1}^M \tilde{w}^j_t W^j_{t-1} }. \ee An approximation of $\mathbb{E}[h(s_t)|Y_{1:t},\theta]$ is given by \be \tilde{h}_{t,M} = \frac{1}{M} \sum_{j=1}^M h(\tilde{s}_t^j) \tilde{W}_{t}^j. \label{eq_pfhtildett} \ee \end{enumerate}

\end{enumerate}

1.9 Bootstrap Particle Filter

\begin{enumerate} \item {\bf Initialization.} \item {\bf Recursion.} For $t=1,\ldots,T$: \begin{enumerate} \item {\bf Forecasting $s_t$.} \item {\bf Forecasting $y_t$.} \item {\bf Updating.} \item {\bf Selection (Optional).} Resample the particles via multinomial resampling. Let $\{ s_t^j \}_{j=1}^M$ denote $M$ iid draws from a multinomial distribution characterized by support points and weights $\{ \tilde{s}_t^j,\tilde{W}_t^j \}$ and set $W_t^j=1$ for $j=,1\ldots,M$. \\ An approximation of $\mathbb{E}[h(s_t)|Y_{1:t},\theta]$ is given by \be \bar{h}_{t,M} = \frac{1}{M} \sum_{j=1}^M h(s_t^j)W_{t}^j. \label{eq_pfhtt} \ee \end{enumerate}

\end{enumerate}

1.10 Likelihood Approximation

\begin{itemize} \item The approximation of the {\color{red} log likelihood function} is given by \be \ln \hat{p}(Y_{1:T}|\theta) = \sum_{t=1}^T \ln \left( \frac{1}{M} \sum_{j=1}^M \tilde{w}^j_t W_{t-1}^j \right). \ee \item One can show that the approximation of the {\color{blue} likelihood function is unbiased}. \spitem This implies that the approximation of the {\color{red} log likelihood function is downward biased.} \end{itemize}

1.11 The Role of Measurement Errors

\begin{itemize} \spitem Measurement errors may not be intrinsic to DSGE model. \spitem Bootstrap filter needs non-degenerate $p(y_t|s_t,\theta)$ for incremental weights to be well defined. \spitem Decreasing the measurement error variance $\Sigma_u$, holding everything else fixed, increases the variance of the particle weights, and reduces the accuracy of Monte Carlo approximation. \end{itemize}

1.12 An empirical introduction to BSPF

Let’s check the BSPF on a linear process

\begin{eqnarray*} s_t &=& \rho s_{t-1} + \sigma_{e} \epsilon_t, \quad \epsilon_t\sim N(0,1) \\ y_t &=& 2 s_t + \sigma_u u_t, \quad u_t \sim N(0,1) \end{eqnarray*}

Let’s also assume that \(s_0 \sim N(1,1)\).
\(\rho = 0.8\).
\(\sigma_{e} = 0.1\)
We are going to go through one iteration as the particle filter, with \(M = 1000\) particles.

1.13 Initialization

To obtain draws from \(s_0\), we draw 1000 particles from a \(N(1,1)\).

initialization.png

1.14 Forecasting \(s_1\)

For each of the 1000 particles, we simulate from \(s_1^i = \rho s_0^i + \sigma_e e^i\) with \(e^i \sim N(0,1)\).

forecast.png

1.15 Updating \(s_1\)

Now it’s time to reweight the particles based on the how well they actually predicted \(y_1\).
To predict \(y_1\), we simply multiply \(s_t^i\) by 2.
How good is this prediction, let’s think about in the context of ME.
\(y_1 = 0.2, \quad \sigma_u \in\{0.05, 0.3, 0.5\}\)
If the ME is very small, the only particles that make very accurate predictions are worthwhile.

1.16 Predicting \(y_1\)

updated.png

1.17 Updated \(s_1, \sigma_u = 0.3\)

updated2.png

1.18 Updated \(s_1, \sigma_u = 0.5\)

updated2big.png

1.19 Updated \(s_1, \sigma_u = 0.05\)

updated2small.png

1.20 Generic Particle Filter

\begin{enumerate} \item {\bf Initialization.} Same as BS PF \item {\bf Recursion.} For $t=1,\ldots,T$: \begin{enumerate} \item {\bf Forecasting $s_t$.} Draw $\tilde{s}_t^j$ from density $g_t(\tilde{s}_t|s_{t-1}^j,\theta)$ and define \be {\color{blue} \omega_t^j = \frac{p(\tilde{s}_t^j|s_{t-1}^j,\theta)}{g_t(\tilde{s}_t^j|s_{t-1}^j,\theta)}.} \label{eq_generalpfomega} \ee An approximation of $\mathbb{E}[h(s_t)|Y_{1:t-1},\theta]$ is given by \be \hat{h}_{t,M} = \frac{1}{M} \sum_{j=1}^M h(\tilde{s}_t^j) {\color{blue} \omega_t^j} W_{t-1}^j. \label{eq_generalpfhtt1} \ee \item {\bf Forecasting $y_t$.} Define the incremental weights $\tilde{w}^j_t = p(y_t|\tilde{s}^j_t,\theta) {\color{blue} \omega_t^j}$. The predictive density $p(y_t|Y_{1:t-1},\theta)$ can be approximated by \be \hat{p}(y_t|Y_{1:t-1},\theta) = \frac{1}{M} \sum_{j=1}^M \tilde{w}^j_t W_{t-1}^j. \ee \item {\bf Updating.} Same as BS PF \item {\bf Selection.} Same as BS PF \end{enumerate}

\item {\bf Likelihood Approximation.} Same as BS PF \end{enumerate}

1.21 Asymptotics

\begin{itemize} \item The convergence results can be established recursively, starting from the assumption \begin{eqnarray*} \bar{h}_{t-1,M} &\stackrel{a.s.}{\longrightarrow}& \mathbb{E}[h(s_{t-1})|Y_{1:t-1}], \\ \sqrt{M} \big( \bar{h}_{t-1,M} - \mathbb{E}[h(s_{t-1})|Y_{1:t-1}] \big) &\Longrightarrow& N \big( 0, \Omega_{t-1}(h) \big). \nonumber \end{eqnarray*} \item Forward iteration: draw $s_t$ from $g_t(s_t|s_{t-1}^j)= p(s_t|s_{t-1}^j)$. \item Decompose \begin{eqnarray} \lefteqn{\hat{h}_{t,M} - \mathbb{E}[h(s_t)|Y_{1:t-1}]} \label{eq_pfdecomphtt1} \\ &=& \frac{1}{M} \sum_{j=1}^M \left( h(\tilde{s}_t^j) - \mathbb{E}_{p(\cdot|s_{t-1}^j)}[h] \right) W_{t-1}^j \nonumber \\ & & + \frac{1}{M} \sum_{j=1}^M \left( \mathbb{E}_{p(\cdot|s_{t-1}^j)}[h] W_{t-1}^j - \mathbb{E}[h(s_t)|Y_{1:t-1}] \right) \nonumber \\ &=& I + II, \nonumber \end{eqnarray} \item Both $I$ and $II$ converge to zero (and potentially satisfy CLT). \end{itemize}

1.22 Asymptotics

\begin{itemize} \item Updating step approximates \be\hspace{-0.4in} \mathbb{E}[h(s_t)|Y_{1:t}] = \frac{ \int h(s_t) p(y_t|s_t) p(s_t |Y_{1:t-1}) d s_t }{ \int p(y_t|s_t) p(s_t |Y_{1:t-1}) d s_t } \approx \frac{ \frac{1}{M} \sum_{j=1}^M h(\tilde{s}_t^j) \tilde{w}_t^j W_{t-1}^j }{ \frac{1}{M} \sum_{j=1}^M \tilde{w}_t^j W_{t-1}^j} \ee \item Define the normalized incremental weights as \be v_t(s_t) = \frac{p(y_t|s_t)}{\int p(y_t|s_t) p(s_t|Y_{1:t-1}) ds_t}. \label{eq_pfincrweightv} \ee \item Under suitable regularity conditions, the Monte Carlo approximation satisfies a CLT of the form \begin{eqnarray} \lefteqn{\sqrt{M} \big( \tilde{h}_{t,M} - \mathbb{E}[h(s_t)|Y_{1:t}] \big) } \label{eq_pftildehclt} \\ &\Longrightarrow& N \big( 0, \tilde{\Omega}_t(h) \big), \quad \tilde{\Omega}_t(h) = \hat{\Omega}_t \big( v_t(s_t) ( h(s_t) - \mathbb{E}[h(s_t)|Y_{1:t}] )\big). \nonumber \end{eqnarray} \item Distribution of particle weights matters for accuracy! $\Longrightarrow$ Resampling! \end{itemize}

1.23 Adapting the Generic PF

\begin{itemize} \spitem Conditionally-optimal importance distribution: \[ g_t(\tilde{s}_t|s^j_{t-1}) = p(\tilde{s}_t|y_t,s_{t-1}^j). \] This is the posterior of $s_t$ given $s_{t-1}^j$. Typically infeasible, but a good benchmark. \spitem Approximately conditionally-optimal distributions: from linearize version of DSGE model or approximate nonlinear filters. \spitem Conditionally-linear models: do Kalman filter updating on a subvector of $s_t$. Example: \begin{eqnarray*} y_t &=& \Psi_0(m_t) + \Psi_1(m_t) t + \Psi_2(m_t) s_t + u_t, \quad u_t \sim N(0,\Sigma_u), \label{eq_pfsslinearms} \\ s_t &=& \Phi_0(m_t) + \Phi_1(m_t)s_{t-1} + \Phi_\epsilon(m_t) \epsilon_t, \quad \epsilon_t \sim N(0,\Sigma_\epsilon), \nonumber \end{eqnarray*} where $m_t$ follows a discrete Markov-switching process. \end{itemize}

1.24 More on Conditionally-Linear Models

\begin{itemize} \item State-space representation is linear conditional on $m_t$. \spitem Write \be p(m_{t},s_{t}|Y_{1:t}) = p(m_{t}|Y_{1:t})p(s_{t}|m_{t},Y_{1:t}), \ee where \be s_t|(m_t,Y_{1:t}) \sim N \big( \bar{s}_{t|t}(m_t), P_{t|t}(m_t) \big). \ee \item Vector of means $\bar{s}_{t|t}(m_t)$ and the covariance matrix $P_{t|t}(m)_t$ are sufficient statistics for the conditional distribution of $s_t$. \item Approximate $(m_t,s_t)|Y_{1:t}$ by $\{m_{t}^j,\bar{s}_{t|t}^j,P_{t|t}^j,W_t^j\}_{i=1}^N$. \item The swarm of particles approximates \begin{eqnarray} \lefteqn{\int h(m_{t},s_{t}) p(m_t,s_t,Y_{1:t}) d(m_t,s_t)} \\ &=& \int \left[ \int h(m_{t},s_{t}) p(s_{t}|m_{t},Y_{1:t}) d s_{t} \right] p(m_{t}|Y_{1:t}) dm_{t} \label{eq_pfraoapproxtt} \nonumber \\ &\approx& \frac{1}{M} \sum_{j=1}^M \left[ \int h(m_{t}^j,s_{t}^j) p_N\big(s_t|\bar{s}_{t|t}^j,P_{t|t}^j \big) ds_t \right] W_t^j. \nonumber \end{eqnarray} \end{itemize}

1.25 More on Conditionally-Linear Models

\begin{itemize} \item We used Rao-Blackwellization to reduce variance: \begin{eqnarray*} \mathbb{V}[h(s_t,m_t)] &=& \mathbb{E} \big[ \mathbb{V}[h(s_t,m_t)|m_t] \big] + \mathbb{V} \big[ \mathbb{E}[h(s_t,m_t)|m_t] \big]\\& \ge& \mathbb{V} \big[ \mathbb{E}[h(s_t,m_t)|m_t] \big] \end{eqnarray*} \item To forecast the states in period $t$, generate $\tilde{m}^j_t$ from $g_t(\tilde{m}_t|m_{t-1}^j)$ and define: \be \omega_t^j = \frac{p(\tilde{m}_t^j|m_{t-1}^j)}{g_t(\tilde{m}_t^j|m_{t-1}^j)}. \label{eq_generalpfomegacondlinear} \ee \item The Kalman filter forecasting step can be used to compute: \be \begin{array}{lcl} \tilde{s}_{t|t-1}^j &=& \Phi_0(\tilde{m}^j_t) + \Phi_1(\tilde{m}^j_t) s_{t-1}^j \\ P_{t|t-1}^j &=& \Phi_\epsilon(\tilde{m}^j_t) \Sigma_\epsilon(\tilde{m}^j_t) \Phi_\epsilon(\tilde{m}^j_t)' \\ \tilde{y}_{t|t-1}^j &=& \Psi_0(\tilde{m}^j_t) + \Psi_1(\tilde{m}^j_t) t + \Psi_2(\tilde{m}^j_t) \tilde{s}_{t|t-1}^j \\ F_{t|t-1}^j &=& \Psi_2(\tilde{m}^j_t) P_{t|t-1}^j \Psi_2(\tilde{m}^j_t)' + \Sigma_u. \end{array} \label{eq_pfforeccondlinear} \ee \end{itemize}

1.26 More on Conditionally-Linear Models

\begin{itemize} \item Then, \begin{eqnarray} \lefteqn{\int h(m_{t},s_{t}) p(m_t,s_t|Y_{1:t-1}) d(m_t,s_t)} \\ &=& \int \left[ \int h(m_{t},s_{t}) p(s_{t}|m_{t},Y_{1:t-1}) d s_{t} \right] p(m_{t}|Y_{1:t-1}) dm_{t} \label{eq_generalpfhtt1condlinear} \nonumber \\ &\approx&\frac{1}{M} \sum_{j=1}^M \left[ \int h(m_{t}^j,s_{t}^j) p_N\big(s_t| \tilde{s}_{t|t-1}^j,P_{t|t-1}^j \big) ds_t \right] \omega_t^j W_{t-1}^j \nonumber \end{eqnarray} \item The likelihood approximation is based on the incremental weights \be \tilde{w}_t^j = p_N \big(y_t|\tilde{y}_{t|t-1}^j,F_{t|t-1}^j \big) \omega_t^j. \label{eq_generalpfincrweightcondlinear} \ee \item Conditional on $\tilde{m}_t^j$ we can use the Kalman filter once more to update the information about $s_t$ in view of the current observation $y_t$: \be \begin{array}{lcl} \tilde{s}_{t|t}^j &=& \tilde{s}_{t|t-1}^j + P_{t|t-1}^j \Psi_2(\tilde{m}^j_t)' \big( F_{t|t-1}^j \big)^{-1} (y_t - \bar{y}^j_{t|t-1}) \\ \tilde{P}_{t|t}^j &=& P^j_{t|t-1} - P^j_{t|t-1} \Psi_2(\tilde{m}^j_t)'\big(F^j_{t|t-1} \big)^{-1} \Psi_2(\tilde{m}^j_t) P_{t|t-1}^j. \end{array} \label{eq_pfupdatecondlinear} \ee \end{itemize}

1.27 Particle Filter For Conditionally Linear Models

\begin{enumerate} \item {\bf Initialization.} \item {\bf Recursion.} For $t=1,\ldots,T$: \begin{enumerate} \item {\bf Forecasting $s_t$.} Draw $\tilde{m}_t^j$ from density $g_t(\tilde{m}_t|m_{t-1}^j,\theta)$, calculate the importance weights $\omega_t^j$ in~(\ref{eq_generalpfomegacondlinear}), and compute $\tilde{s}_{t|t-1}^j$ and $P_{t|t-1}^j$ according to~(\ref{eq_pfforeccondlinear}). An approximation of $\mathbb{E}[h(s_t,m_t)|Y_{1:t-1},\theta]$ is given by~(\ref{eq_generalpfhtt1condlinear}). \item {\bf Forecasting $y_t$.} Compute the incremental weights $\tilde{w}_t^j$ according to~(\ref{eq_generalpfincrweightcondlinear}). Approximate the predictive density $p(y_t|Y_{1:t-1},\theta)$ by \be \hat{p}(y_t|Y_{1:t-1},\theta) = \frac{1}{M} \sum_{j=1}^M \tilde{w}^j_t W_{t-1}^j. \ee \item {\bf Updating.} Define the normalized weights \be \tilde{W}_t^j = \frac{\tilde{w}_t^j W_{t-1}^j}{\frac{1}{M} \sum_{j=1}^M \tilde{w}_t^j W_{t-1}^j} \ee and compute $\tilde{s}_{t|t}^j$ and $\tilde{P}_{t|t}^j$ according to~(\ref{eq_pfupdatecondlinear}). An approximation of $\mathbb{E}[h(m_{t},s_{t})|Y_{1:t},\theta]$ can be obtained from $\{\tilde{m}_t^j,\tilde{s}_{t|t}^j,\tilde{P}_{t|t}^j,\tilde{W}_t^j\}$. \item {\bf Selection.} \end{enumerate}

\end{enumerate}

1.28 Nonlinear and Partially Deterministic State Transitions

\begin{itemize} \spitem Example: \[ s_{1,t} = \Phi_1(s_{t-1},\epsilon_t), \quad s_{2,t} = \Phi_2(s_{t-1}), \quad \epsilon_t \sim N(0,1). \] \item Generic filter requires evaluation of $p(s_t|s_{t-1})$. \spitem Define $\varsigma_t = [s_t',\epsilon_t']'$ and add identity $\epsilon_t = \epsilon_t$ to state transition. \spitem Factorize the density $p(\varsigma_t|\varsigma_{t-1})$ as \[ p(\varsigma_t|\varsigma_{t-1}) = p^\epsilon(\epsilon_t) p(s_{1,t}|s_{t-1},\epsilon_t) p(s_{2,t}|s_{t-1}). \] where $p(s_{1,t}|s_{t-1},\epsilon_t)$ and $p(s_{2,t}|s_{t-1})$ are pointmasses. \spitem Sample innovation $\epsilon_t$ from $g_t^\epsilon(\epsilon_t|s_{t-1})$. \spitem Then \[ \omega_t^j = \frac{ p(\tilde{\varsigma}^j_t|\varsigma^j_{t-1}) }{g_t (\tilde{\varsigma}^j_t|\varsigma^j_{t-1})} = \frac{ p^\epsilon( \tilde{\epsilon}_t^j) p(\tilde{s}_{1,t}^j|s^j_{t-1},\tilde{\epsilon}^j_t) p(\tilde{s}^j_{2,t}|s^j_{t-1}) } { g_t^\epsilon(\tilde{\epsilon}^j_t|s^j_{t-1}) p(\tilde{s}_{1,t}^j|s^j_{t-1},\tilde{\epsilon}^j_t) p(\tilde{s}^j_{2,t}|s^j_{t-1}) } = \frac{ p^\epsilon(\tilde{\epsilon}_t^j)}{g_t^\epsilon(\tilde{\epsilon}^j_t|s^j_{t-1})}. \label{eq_pfomegaepsilon} \] \end{itemize}

1.29 Degenerate Measurement Error Distributions

\begin{itemize} \item Our discussion of the conditionally-optimal importance distribution suggests that in the absence of measurement errors, one has to solve the system of equations \[ y_t = \Psi \big( \Phi( s_{t-1}^j,\tilde{\epsilon}_t^j) \big), \label{eq_pfepssystem} \] to determine $\tilde{\epsilon}_t^j$ as a function of $s_{t-1}^j$ and the current observation $y_t$. \spitem Then define \[ \omega_t^j = p^\epsilon(\tilde{\epsilon}_t^j) \quad \mbox{and} \quad \tilde{s}_t^j = \Phi( s_{t-1}^j,\tilde{\epsilon}_t^j). \] \item Difficulty: one has to find all solutions to a nonlinear system of equations. \spitem While resampling duplicates particles, the duplicated particles do not mutate, which can lead to a degeneracy. \end{itemize}

1.30 Next Steps

\begin{itemize} \spitem We will now apply PFs to linearized DSGE models. \spitem This allows us to compare the Monte Carlo approximation to the ``truth.'' \spitem Small-scale New Keynesian DSGE model \spitem Smets-Wouters model \end{itemize}

1.31 Illustration 1: Small-Scale DSGE Model

Parameter Values For Likelihood Evaluation

\begin{center} \begin{tabular}{lcclcc} \hline\hline Parameter & $\theta^{m}$ & $\theta^{l}$ & Parameter & $\theta^{m}$ & $\theta^{l}$ \\ \hline $\tau$ & 2.09 & 3.26 & $\kappa$ & 0.98 & 0.89 \\ $\psi_1$ & 2.25 & 1.88 & $\psi_2$ & 0.65 & 0.53 \\ $\rho_r$ & 0.81 & 0.76 & $\rho_g$ & 0.98 & 0.98 \\ $\rho_z$ & 0.93 & 0.89 & $r^{(A)}$ & 0.34 & 0.19 \\ $\pi^{(A)}$ & 3.16 & 3.29 & $\gamma^{(Q)}$ & 0.51 & 0.73 \\ $\sigma_r$ & 0.19 & 0.20 & $\sigma_g$ & 0.65 & 0.58 \\ $\sigma_z$ & 0.24 & 0.29 & $\ln p(Y|\theta)$ & -306.5 & -313.4 \\ \hline \end{tabular} \end{center}

1.32 Likelihood Approximation

\begin{center} \begin{tabular}{c} $\ln \hat{p}(y_t|Y_{1:t-1},\theta^m)$ vs. $\ln p(y_t|Y_{1:t-1},\theta^m)$ \\ \includegraphics[width=3.2in]{dsge1_me_paramax_lnpy.pdf} \end{tabular} \end{center}

Notes: The results depicted in the figure are based on a single run of the bootstrap PF (dashed, \(M=40,000\)), the conditionally-optimal PF (dotted, \(M=400\)), and the Kalman filter (solid).

1.33 Filtered State

\begin{center} \begin{tabular}{c} $\widehat{\mathbb{E}}[\hat{g}_t|Y_{1:t},\theta^m]$ vs. $\mathbb{E}[\hat{g}_t|Y_{1:t},\theta^m]$\\ \includegraphics[width=3.2in]{dsge1_me_paramax_ghat.pdf} \end{tabular} \end{center}

Notes: The results depicted in the figure are based on a single run of the bootstrap PF (dashed, \(M=40,000\)), the conditionally-optimal PF (dotted, \(M=400\)), and the Kalman filter (solid).

1.34 Distribution of Log-Likelihood Approximation Errors}

\begin{center} \begin{tabular}{c} Bootstrap PF: $\theta^m$ vs. $\theta^l$ \\ \includegraphics[width=3in]{dsge1_me_bootstrap_lnlhbias.pdf} \end{tabular} \end{center}

Notes: Density estimate of \(\hat{\Delta}_1 = \ln \hat{p}(Y_{1:T}|\theta)- \ln p(Y_{1:T}|\theta)\) based on \(N_{run}=100\) runs of the PF. Solid line is \(\theta = \theta^m\); dashed line is \(\theta = \theta^l\) (\(M=40,000\)).

1.35 Distribution of Log-Likelihood Approximation Errors}

\begin{center} \begin{tabular}{c} $\theta^m$: Bootstrap vs. Cond. Opt. PF \\ \includegraphics[width=3in]{dsge1_me_paramax_lnlhbias.pdf} \\ \end{tabular} \end{center}

Notes: Density estimate of \(\hat{\Delta}_1 = \ln \hat{p}(Y_{1:T}|\theta)- \ln p(Y_{1:T}|\theta)\) based on \(N_{run}=100\) runs of the PF. Solid line is bootstrap particle filter (\(M=40,000\)); dotted line is conditionally optimal particle filter (\(M=400\)).

1.36 Summary Statistics for Particle Filters

\begin{center} \begin{tabular}{lrrr} \\ \hline \hline & Bootstrap & Cond. Opt. & Auxiliary \\ \hline Number of Particles $M$ & 40,000 & 400 & 40,000 \\ Number of Repetitions & 100 & 100 & 100 \\ \hline \multicolumn{4}{c}{High Posterior Density: $\theta = \theta^m$} \\ \hline Bias $\hat{\Delta}_1$ & -1.39 & -0.10 & -2.83 \\ StdD $\hat{\Delta}_1$ & 2.03 & 0.37 & 1.87 \\ Bias $\hat{\Delta}_2$ & 0.32 & -0.03 & -0.74 \\ \hline \multicolumn{4}{c}{Low Posterior Density: $\theta = \theta^l$} \\ \hline Bias $\hat{\Delta}_1$ & -7.01 & -0.11 & -6.44 \\ StdD $\hat{\Delta}_1$ & 4.68 & 0.44 & 4.19 \\ Bias $\hat{\Delta}_2$ & -0.70 & -0.02 & -0.50 \\ \hline \end{tabular} \end{center}

Notes: \(\hat{\Delta}_1 = \ln \hat{p}(Y_{1:T}|\theta) - \ln p(Y_{1:T}|\theta)\) and \(\hat{\Delta}_2 = \exp[ \ln \hat{p}(Y_{1:T}|\theta) - \ln p(Y_{1:T}|\theta) ] - 1\). Results are based on \(N_{run}=100\) runs of the particle filters.

1.37 Great Recession and Beyond

\begin{center} \begin{tabular}{c} Mean of Log-likelihood Increments $\ln \hat{p}(y_t|Y_{1:t-1},\theta^m)$ \\ \includegraphics[width=3in]{dsge1_me_great_recession_lnpy.pdf} \end{tabular} \end{center}

Notes: Solid lines represent results from Kalman filter. Dashed lines correspond to bootstrap particle filter (\(M=40,000\)) and dotted lines correspond to conditionally-optimal particle filter (\(M=400\)). Results are based on \(N_{run}=100\) runs of the filters.

1.38 Great Recession and Beyond

\begin{center} \begin{tabular}{c} Mean of Log-likelihood Increments $\ln \hat{p}(y_t|Y_{1:t-1},\theta^m)$ \\ \includegraphics[width=2.9in]{dsge1_me_post_great_recession_lnpy.pdf} \end{tabular} \end{center}

Notes: Solid lines represent results from Kalman filter. Dashed lines correspond to bootstrap particle filter (\(M=40,000\)) and dotted lines correspond to conditionally-optimal particle filter (\(M=400\)). Results are based on \(N_{run}=100\) runs of the filters.

1.39 Great Recession and Beyond

\begin{center} \begin{tabular}{c} Log Standard Dev of Log-Likelihood Increments \\ \includegraphics[width=3in]{dsge1_me_great_recession_lnpy_lnstd.pdf} \end{tabular} \end{center}

Notes: Solid lines represent results from Kalman filter. Dashed lines correspond to bootstrap particle filter (\(M=40,000\)) and dotted lines correspond to conditionally-optimal particle filter (\(M=400\)). Results are based on \(N_{run}=100\) runs of the filters.

1.40 SW Model: Distr. of Log-Likelihood Approximation Errors

\begin{center} \begin{tabular}{c} BS ($M=40,000$) versus CO ($M=4,000$) \\ \includegraphics[width=3in]{sw_me_paramax_lnlhbias.pdf} \end{tabular} \end{center}

Notes: Density estimates of \(\hat{\Delta}_1 = \ln \hat{p}(Y|\theta)- \ln p(Y|\theta)\) based on \(N_{run}=100\). Solid densities summarize results for the bootstrap (BS) particle filter; dashed densities summarize results for the conditionally-optimal (CO) particle filter.

1.41 SW Model: Distr. of Log-Likelihood Approximation Errors

\begin{center} \begin{tabular}{c} BS ($M=400,000$) versus CO ($M=4,000$) \\ \includegraphics[width=3in]{sw_me_paramax_bs_lnlhbias.pdf} \end{tabular} \end{center}

Notes: Density estimates of \(\hat{\Delta}_1 = \ln \hat{p}(Y|\theta)- \ln p(Y|\theta)\) based on \(N_{run}=100\). Solid densities summarize results for the bootstrap (BS) particle filter; dashed densities summarize results for the conditionally-optimal (CO) particle filter.

1.42 SW Model: Summary Statistics for Particle Filters

\begin{center} \begin{tabular}{lrrrr} \\ \hline \hline & \multicolumn{2}{c}{Bootstrap} & \multicolumn{2}{c}{Cond. Opt.} \\ \hline Number of Particles $M$ & 40,000 & 400,000 & 4,000 & 40,000 \\ Number of Repetitions & 100 & 100 & 100 & 100 \\ \hline \multicolumn{5}{c}{High Posterior Density: $\theta = \theta^m$} \\ \hline Bias $\hat{\Delta}_1$ & -238.49 & -118.20 & -8.55 & -2.88 \\ StdD $\hat{\Delta}_1$ & 68.28 & 35.69 & 4.43 & 2.49 \\ Bias $\hat{\Delta}_2$ & -1.00 & -1.00 & -0.87 & -0.41 \\ \hline \multicolumn{5}{c}{Low Posterior Density: $\theta = \theta^l$} \\ \hline Bias $\hat{\Delta}_1$ & -253.89 & -128.13 & -11.48 & -4.91 \\ StdD $\hat{\Delta}_1$ & 65.57 & 41.25 & 4.98 & 2.75 \\ Bias $\hat{\Delta}_2$ & -1.00 & -1.00 & -0.97 & -0.64 \\ \hline \end{tabular} \end{center}

Notes: \(\hat{\Delta}_1 = \ln \hat{p}(Y_{1:T}|\theta) - \ln p(Y_{1:T}|\theta)\) and \(\hat{\Delta}_2 = \exp[ \ln \hat{p}(Y_{1:T}|\theta) - \ln p(Y_{1:T}|\theta) ] - 1\). Results are based on \(N_{run}=100\).

2 Tempered Particle Filtering

2.1 Tempered Particle Filter

  • Use sequence of distributions between the forecast and updated state distributions.


  • Candidates? Well, the PF will work arbitrarily well when \(\Sigma_{u}\rightarrow\infty\).


  • Reduce measurement error variance from an inflated initial level \(\Sigma_u(\theta)/{\color{blue}\phi_1}\) to the nominal level \(\Sigma_u(\theta)\).

2.2 The Key Idea

  • Define

    \begin{eqnarray*} p_n(y_t|s_t,\theta) &\propto& {\color{blue}\phi_n^{d/2}} |\Sigma_u(\theta)|^{-1/2}\exp \bigg\{ - \frac{1}{2} (y_t - \Psi(s_t,t;\theta))' \\ && \times {\color{blue}\phi_n} \Sigma_u^{-1}(\theta)(y_t - \Psi(s_t,t;\theta)) \bigg\}, \end{eqnarray*}

    where: \[ {\color{blue} \phi_1 < \phi_2 < \ldots < \phi_{N_\phi} = 1}. \]

  • Bridge posteriors given \(s_{t-1}\): \[ p_n(s_t|y_t,s_{t-1},\theta) \propto p_n(y_t|s_t,\theta) p(s_t|s_{t-1},\theta). \] \item bridge posteriors given \(Y_{1:t-1}\): \[ p_n(s_t|Y_{1:t})= \int p_n(s_t|y_t,s_{t-1},\theta) p(s_{t-1}|Y_{1:t-1}) ds_{t-1}. \]

2.3 Algorithm Overview

  • For each \(t\) we start with the BS-PF iteration by simulating the state-transition equation forward.
  • Incremental weights are obtained based on inflated measurement error variance \(\Sigma_u/{\color{blue}\phi_1}\).
  • Then we start the tempering iterations
  • After the tempering iterations are completed we proceed to \(t+1\)…

2.4 Overview}

  • If \(N_{\phi} = 1\), this collapses to the Bootstrap particle filter.
  • For each time period \(t\), we embed a ``static’’ SMC sampler used for parameter estimation Iterate over \(n=1,\ldots,N_\phi\):
    • Correction step: change particle weights (importance sampling)
    • Selection step: equalize particle weights (resampling of particles)
    • Mutation step: change particle values (based on Markov transition kernel generated with Metropolis-Hastings algorithm)
    • Each step approximates the same \(\int h(s_t) p_n(s_{t}|Y_{1:t},\theta) ds_t\).

2.5 An Illustration: \(p_n(s_t|Y_{1:t})\), \(n=1,\ldots,N_\phi\).

\begin{center} \includegraphics[width=4in]{phi_evolution.pdf} \end{center}

2.6 Choice of \(\phi_n\)

  • Based on Geweke and Frischknecht (2014).
  • Express post-correction inefficiency ratio as \[ \mbox{InEff}(\phi_n) = \frac{\frac{1}{M} \sum_{j=1}^M \exp [ -2(\phi_n-\phi_{n-1}) e_{j,t}] }{ \left(\frac{1}{M} \sum_{j=1}^M \exp [ -(\phi_n-\phi_{n-1}) e_{j,t}] \right)^2} \] where \[ e_{j,t} = \frac{1}{2} (y_t - \Psi(s_t^{j,n-1},t;\theta))' \Sigma_u^{-1}(y_t - \Psi(s_t^{j,n-1},t;\theta)). \]
  • Pick target ratio \(r^*\) and solve equation \(\mbox{InEff}(\phi_n^*) = r^*\) for \(\phi_n^*\).

\end{frame}

2.7 Small-Scale Model: PF Summary Statistics

\begin{center} \begin{tabular}{l@{\hspace{1cm}}r@{\hspace{1cm}}rrrr} \\ \hline \hline & BSPF & \multicolumn{4}{c}{TPF} \\ \hline Number of Particles $M$ & 40k & 4k & 4k & 40k & 40k \\ Target Ineff. Ratio $r^*$ & & 2 & 3 & 2 & 3 \\ \hline \multicolumn{6}{c}{High Posterior Density: $\theta = \theta^m$} \\ \hline Bias & -1.4 & -0.9 & -1.5 & -0.3 & -.05 \\ StdD & 1.9 & 1.4 & 1.7 & 0.4 & 0.6 \\ $T^{-1}\sum_{t=1}^{T}N_{\phi,t}$ & 1.0 & 4.3 & 3.2 & 4.3 & 3.2 \\ Average Run Time (s) & 0.8 & 0.4 & 0.3 & 4.0 & 3.3 \\ \hline \multicolumn{6}{c}{Low Posterior Density: $\theta = \theta^l$} \\ \hline Bias & -6.5 & -2.1 & -3.1 & -0.3 & -0.6 \\ StdD & 5.3 & 2.1 & 2.6 & 0.8 & 1.0 \\ $T^{-1}\sum_{t=1}^{T}N_{\phi,t}$ & 1.0 & 4.4 & 3.3 & 4.4 & 3.3 \\ Average Run Time (s) & 1.6 & 0.4 & 0.3 & 3.7 & 2.9 \\ \hline \end{tabular} \end{center}

2.8 Embedding PF Likelihoods into Posterior Samplers

  • Likelihood functions for nonlinear DSGE models can be approximated by the PF.
  • We will now embed the likelihood approximation into a posterior sampler: PFMH Algorithm (a special case of PMCMC).
  • The book also discusses \(SMC^2\).

2.9 Embedding PF Likelihoods into Posterior Samplers}

  • \(\{ p(Y|\theta), p(\theta|Y), p(Y) \}\), which are related according to:

\[ p(\theta|Y) = \frac{p(Y|\theta) p(\theta)}{p(Y)} , \quad p(Y) = \int p(Y|\theta) p(\theta) d\theta \]

  • \(\{ \hat{p}(Y|\theta), \hat{p}(\theta|Y), \hat{p}(Y) \}\), which are related according to:

\[ \hat{p}(\theta|Y) = \frac{\hat{p}(Y|\theta) p(\theta)}{\hat{p}(Y)} , \quad \hat{p}(Y) = \int \hat{p}(Y|\theta) p(\theta) d\theta. \]

  • Surprising result (Andrieu, Docet, and Holenstein, 2010): under certain conditions we can replace \(p(Y|\theta)\) by \(\hat{p}(Y|\theta)\) and still obtain draws from \(p(\theta|Y)\).

2.10 PFMH Algorithm

For \(i=1\) to \(N\):

  1. Draw \(\vartheta\) from a density \(q(\vartheta|\theta^{i-1})\).
  2. Set \(\theta^i = \vartheta\) with probability \[ \alpha(\vartheta | \theta^{i-1} ) = \min \left\{ 1, \; \frac{ \hat{p}(Y| \vartheta )p(\vartheta) / q(\vartheta | \theta^{i-1}) }{ \hat{p}(Y|\theta^{i-1}) p(\theta^{i-1}) / q(\theta^{i-1} | \vartheta) } \right\} \] and \(\theta^{i} = \theta^{i-1}\) otherwise. The likelihood approximation \(\hat{p}(Y|\vartheta)\) is computed using a particle filter.

2.11 Why Does the PFMH Work?

  • At each iteration the filter generates draws \(\tilde{s}_t^j\) from the proposal distribution \(g_t(\cdot|s_{t-1}^j)\).
  • Let \(\tilde{S}_t = \big( \tilde{s}_t^1,\ldots,\tilde{s}_t^M \big)'\) and denote the entire sequence of draws by \(\tilde{S}_{1:T}^{1:M}\).
  • Selection step: define a random variable \(A_t^j\) that contains this ancestry information. For instance, suppose that during the resampling particle \(j=1\) was assigned the value \(\tilde{s}_t^{10}\) then \(A_t^1=10\). Let \(A_t = \big( A_t^1, \ldots, A_t^N \big)\) and use \(A_{1:T}\) to denote the sequence of \(A_t\)’s.
  • PFMH operates on an enlarged probability space: \(\theta\), \(\tilde{S}_{1:T}\) and \(A_{1:T}\).

2.12 Why Does the PFMH Work?

  • Use \(U_{1:T}\) to denote random vectors for \(\tilde{S}_{1:T}\) and \(A_{1:T}\). \(U_{1:T}\) is an array of \(iid\) uniform random numbers.
  • The transformation of \(U_{1:T}\) into \((\tilde{S}_{1:T},A_{1:T})\) typically depends on \(\theta\) and \(Y_{1:T}\), because the proposal distribution \(g_t(\tilde{s}_t|s_{t-1}^j)\) depends both on the current observation \(y_t\) as well as the parameter vector \(\theta\).
  • E.g., implementation of conditionally-optimal PF requires sampling from a \(N(\bar{s}_{t|t}^j,P_{t|t})\) distribution for each particle \(j\). Can be done using a prob integral transform of uniform random variables.
  • We can express the particle filter approximation of the likelihood function as \[ \hat{p}(Y_{1:T}|\theta) = g(Y_{1:T}|\theta,U_{1:T}). \] where \[ U_{1:T} \sim p(U_{1:T}) = \prod_{t=1}^T p(U_t). \]

2.13 Why Does the PFMH Work?

  • Define the joint distribution \[ p_g\big( Y_{1:T},\theta,U_{1:T} \big) = g(Y_{1:T}|\theta,U_{1:T}) p\big(U_{1:T} \big) p(\theta). \]
  • The PFMH algorithm samples from the joint posterior \[ p_g\big( \theta, U_{1:T} | Y_{1:T} \big) \propto g(Y|\theta,U_{1:T}) p\big(U_{1:T} \big) p(\theta) \] and discards the draws of \(\big( U_{1:T} \big)\).
  • For this procedure to be valid, it needs to be the case that PF approximation is unbiased: \[ \mathbb{E}[\hat{p}(Y_{1:T}|\theta)] = \int g(Y_{1:T}|\theta,U_{1:T})p\big(U_{1:T} \big) d\theta = p(Y_{1:T}|\theta). \]

2.14 Why Does the PFMH Work?

  • We can express acceptance probability directly in terms of \(\hat{p}(Y_{1:T}|\theta)\).
  • Need to generate a proposed draw for both \(\theta\) and \(U_{1:T}\): \(\vartheta\) and \(U_{1:T}^*\).
  • The proposal distribution for \((\vartheta,U_{1:T}^*)\) in the MH algorithm is given by \(q(\vartheta|\theta^{(i-1)}) p(U_{1:T}^*)\).
  • No need to keep track of the draws \((U_{1:T}^*)\).
  • MH acceptance probability:

    \begin{eqnarray*} \alpha(\vartheta|\theta^{i-1}) &=& \min \; \left\{ 1, \frac{ \frac{ g(Y|\vartheta,U^*)p(U^*) p(\vartheta)}{ q(\vartheta|\theta^{(i-1)}) p(U^*) } }{ \frac{ g(Y|\theta^{(i-1)},U^{(i-1)})p(U^{(i-1)}) p(\theta^{(i-1)})}{ q(\theta^{(i-1)}|\theta^*) p(U^{(i-1)})} } \right\} \\ &=& \min \; \left\{ 1, \frac{ \hat{p}(Y|\vartheta)p(\vartheta) \big/ q(\vartheta|\theta^{(i-1)}) }{ \hat{p}(Y|\theta^{(i-1)})p(\theta^{(i-1)}) \big/ q(\theta^{(i-1)}|\vartheta) } \right\}. \end{eqnarray*}

2.15 Small-Scale DSGE: Accuracy of MH Approximations

  • Results are based on \(N_{run}=20\) runs of the PF-RWMH-V algorithm.
  • Each run of the algorithm generates \(N=100,000\) draws and the first \(N_0=50,000\) are discarded.
  • The likelihood function is computed with the Kalman filter (KF), bootstrap particle filter (BS-PF, \(M=40,000\)) or conditionally-optimal particle filter (CO-PF, \(M=400\)).
  • ``Pooled’’ means that we are pooling the draws from the \(N_{run}=20\) runs to compute posterior statistics.

2.16 Autocorrelation of PFMH Draws

\begin{center} \includegraphics[width=3in]{dsge1_me_pmcmc_acf.pdf} \end{center}

Notes: The figure depicts autocorrelation functions computed from the output of the 1 Block RWMH-V algorithm based on the Kalman filter (solid), the conditionally-optimal particle filter (dashed) and the bootstrap particle filter (solid with dots).

2.17 Small-Scale DSGE: Accuracy of MH Approximations

\begin{center} \scalebox{0.75}{ \begin{tabular}{lccccccccc} \hline \hline & \multicolumn{3}{c}{Posterior Mean (Pooled)} & \multicolumn{3}{c}{Inefficiency Factors} & \multicolumn{3}{c}{Std Dev of Means} \\ & KF & CO-PF& BS-PF & KF & CO-PF & BS-PF & KF & CO-PF & BS-PF \\ \hline $\tau$ & 2.63 & 2.62 & 2.64 & 66.17 & 126.76 & 1360.22 & 0.020 & 0.028 & 0.091 \\ $\kappa$ & 0.82 & 0.81 & 0.82 & 128.00 & 97.11 & 1887.37 & 0.007 & 0.006 & 0.026 \\ $\psi_1$ & 1.88 & 1.88 & 1.87 & 113.46 & 159.53 & 749.22 & 0.011 & 0.013 & 0.029 \\ $\psi_2$ & 0.64 & 0.64 & 0.63 & 61.28 & 56.10 & 681.85 & 0.011 & 0.010 & 0.036 \\ $\rho_r$ & 0.75 & 0.75 & 0.75 & 108.46 & 134.01 & 1535.34 & 0.002 & 0.002 & 0.007 \\ $\rho_g$ & 0.98 & 0.98 & 0.98 & 94.10 & 88.48 & 1613.77 & 0.001 & 0.001 & 0.002 \\ $\rho_z$ & 0.88 & 0.88 & 0.88 & 124.24 & 118.74 & 1518.66 & 0.001 & 0.001 & 0.005 \\ $r^{(A)}$ & 0.44 & 0.44 & 0.44 & 148.46 & 151.81 & 1115.74 & 0.016 & 0.016 & 0.044 \\ $\pi^{(A)}$ & 3.32 & 3.33 & 3.32 & 152.08 & 141.62 & 1057.90 & 0.017 & 0.016 & 0.045 \\ $\gamma^{(Q)}$ & 0.59 & 0.59 & 0.59 & 106.68 & 142.37 & 899.34 & 0.006 & 0.007 & 0.018 \\ $\sigma_r$ & 0.24 & 0.24 & 0.24 & 35.21 & 179.15 & 1105.99 & 0.001 & 0.002 & 0.004 \\ $\sigma_g$ & 0.68 & 0.68 & 0.67 & 98.22 & 64.18 & 1490.81 & 0.003 & 0.002 & 0.011 \\ $\sigma_z$ & 0.32 & 0.32 & 0.32 & 84.77 & 61.55 & 575.90 & 0.001 & 0.001 & 0.003 \\ $\ln \hat p(Y)$ & -357.14 & -357.17 & -358.32 & & & & 0.040 & 0.038 & 0.949 \\ \hline \end{tabular} } \end{center}

2.18 Computational Considerations

  • We implement the PFMH algorithm on a single machine, utilizing up to twelve cores.
  • For the small-scale DSGE model it takes 30:20:33 [hh:mm:ss] hours to generate 100,000 parameter draws using the bootstrap PF with 40,000 particles. Under the conditionally-optimal filter we only use 400 particles, which reduces the run time to 00:39:20 minutes.

3 Bibliography

3.1 References

Bibliography

  • [Gust_2017] Gust, Herbst, , López-Salido & Smith, The Empirical Implications of the Interest-Rate Lower Bound, American Economic Review, 107(7), 1971–2006 (2017). link. doi.
  • [Bocola_2016] Bocola, The Pass-Through of Sovereign Risk, Journal of Political Economy, 124(4), 879–926 (2016). link. doi.
  • [Fern_ndez_Villaverde_2009] Fernández-Villaverde, Guerrón-Quintana, Pablo, Rubio-Ramírez & Uribe, Risk Matters: The Real Effects of Volatility Shocks, , (2009). link. doi.

Author: Ed Herbst

Created: 2019-11-18 Mon 08:06

Validate