Estimating Three DSGE Models

Three DSGE Models

Application 1: A New Keynesian Model with Correlated Shocks

Application 1: A New Keynesian Model with Correlated Shocks

Priors and Posteriors of \(\rho_{gz}\) and \(\rho_{zg}\)

\begin{center} \includegraphics[width=4in]{static/dsge1_gen_shock_density.pdf} \end{center}

Notes: The two panels depict histograms of prior distributions (shaded area) and kernel density estimates of the posterior densities (solid lines).

Impulse Responses (Part 1)

\begin{center} \includegraphics[width=4in]{static/dsge1_gen_shock_irfs_exo.pdf} \end{center}

Impulse Responses (Part 2)

\begin{center} \includegraphics[width=3in]{static/dsge1_gen_shock_irfs_endo.pdf} \end{center}

Algorithm Configuration

\begin{table}[t!] \begin{center} \begin{tabular}{p{2in}p{2in}} \hline \hline RWMH-V & SMC \ \hline $N = 100,000$ & $N = 4,800$ \\\ $N_{burn} = 50,000 $ & $N_\phi = 500$ \\\ $N_{blocks} = 1$ & $N_{blocks} = 6$, $N_{MH}=1$ \\\ $c= 0.125 $ & $\lambda = 2$ \\\ Run Time: 00:28 (1 core) & Run Time: 05:52 (12 cores) \ \hline \hline\\\ \end{tabular} \end{center} \end{table}

Note: We run each algorithm \(N_{run}=50\) times. Run time is reported as mm:ss.

Posterior Probability Approximations

\begin{center} \begin{tabular}{cc} $\mathbb{P}_\pi\{\rho_{zg} > 0 \}$ & $\mathbb{P}_\pi\{\partial \hat{\pi}_t / \partial \hat{\epsilon}_{g,t} > 0 \}$ \\\ \includegraphics[width=0.46\textwidth]{static/dsge1_gen_shock_prob_rhozg.pdf} & \includegraphics[width=0.46\textwidth]{static/dsge1_gen_shock_prob_pi_g_irf.pdf}\\\ \end{tabular} \end{center}

Notes: Each symbol (50 in total) corresponds to one run of the SMC algorithm (dot) or the RWMH algorithm (triangle).

Marginal Data Density Approximations

\begin{center} \includegraphics[width=3in]{static/dsge1_gen_shock_log_mdd.pdf} \end{center}

Notes: Each symbol (50 in total) corresponds to one run of the SMC algorithm (dot) or the RWMH algorithm (triangle). The SMC algorithm automatically generates an estimate of the MDD; for the RWMH algorithm we use Geweke’s modified harmonic mean estimator.

Marginal Data Density

\begin{table}[t!] \begin{center} \begin{tabular}{lcc} \hline\hline Model & Mean($\ln \hat p(Y)$) & Std. Dev.($\ln \hat p(Y)$) \\\ \hline AR(1) Shocks & $-346.16$ & (0.07) \\\ VAR(1) Shocks & $-314.45$ & (0.05) \\\ \hline \hline\\\ \end{tabular} \end{center} \end{table}

Notes: Table shows mean and standard deviation of SMC-based estimate of the log marginal data density, computed over \(N_{run}=50\) runs of the SMC sampler.

Application 2: Estimation of Smets and Wouters (2007) Model

Generating Quantile Estimates

Accuracy of Quantile Estimates

Algorithm Configuration

\begin{table}[t!] \begin{center} \begin{tabular}{p{2in}p{2in}} \hline \hline RWMH-V & SMC \ \hline $N = 10,000,000$ & $N = 12,000$ \\\ $N_{burn} = 5,000,000 $ & $N_\phi = 500$ \\\ $N_{blocks} = 1$ & $N_{blocks} = 6$, $N_{MH}=1$ \\\ $c= 0.08 $ & $\lambda = 2.1$ \\\ Run Time: 14:06 (1 core) & Run Time: 02:32 (24 cores) \ \hline \hline\\\ \end{tabular} \end{center} \end{table}

Note: We run each algorithm \(N_{run}=50\) times. Run time is reported as hh:mm.

Precision of Quantile Approximations (Part 1)

\begin{center} \begin{tabular}{cc} \includegraphics[width=0.35\textwidth]{static/sw_diffuse_density_Neff_alp.pdf} & \includegraphics[width=0.35\textwidth]{static/sw_diffuse_density_Neff_rdely.pdf} \ \includegraphics[width=0.35\textwidth]{static/sw_diffuse_density_Neff_xiw.pdf} & \includegraphics[width=0.35\textwidth]{static/sw_diffuse_density_Neff_iotaw.pdf} \end{tabular} \end{center}

Notes: Each panel depicts a Kernel estimate of the posterior density (solid) and \(\ln (N_{eff}) = \ln (N/\mbox{InEff}_N)\) (light gray hatched bars correspond to RWMH and solid bars correspond to SMC) for various choices of \(\tau\) equal to \(0.05\), \(0.5\), and \(0.95\).

Precision of Quantile Approximations (Part 2)

\begin{center} \includegraphics[width=0.38\textwidth]{static/sw_diffuse_scatter_Neffs_log.pdf} \end{center}

Notes: \(N_{eff}\) for the RWMH-V and SMC quantile approximations. Each dot corresponds to one parameter. The 45-degree line appears in solid.

Application 3: A Fiscal Policy DSGE Model

Application 3: A Fiscal Policy DSGE Model

Application 3: A Fiscal Policy DSGE Model

Prior Distributions for Fiscal Rule Parameters

\begin{table}[t!] \begin{center} \scalebox{0.93}{ \begin{tabular}{lcccccc} \hline\hline & \multicolumn{3}{c}{LPT Prior} & \multicolumn{3}{c}{Diffuse Prior} \\\ & Type & Para (1) & Para (2) & Type & Para (1) & Para (2)\\\ \hline \multicolumn{7}{c}{Debt Response Parameters} \\\ \hline $\gamma_{g}$ & G & 0.4 & 0.2 & U & 0 & 5 \\\ $\gamma_{tk}$ & G & 0.4 & 0.2 & U & 0 & 5 \\\ $\gamma_{tl}$ & G & 0.4 & 0.2 & U & 0 & 5 \\\ $\gamma_{z}$ & G & 0.4 & 0.2 & U & 0 & 5 \\\ \hline \multicolumn{7}{c}{Output Response Parameters} \\\ \hline $\varphi_{tk}$& G & 1.0 & 0.3 & N & 1.0 & 1 \\\ $\varphi_{tl}$& G & 0.5 & 0.25 & N & 0.5 & 1 \\\ $\varphi_{g}$ & G & 0.07 & 0.05 & N & 0.07 & 1 \\\ $\varphi_{z}$ & G & 0.2 & 0.1 & N & 0.2 & 1 \\\ \hline \multicolumn{7}{c}{Exogenous Tax Comovement Parameters} \\\ \hline $\phi_{kl}$ & N & 0.25 & 0.1 & N & 0.25 & 1 \\\ $\phi_{kc}$ & N & 0.05 & 0.1 & N & 0.05 & 1 \\\ $\phi_{lc}$ & N & 0.05 & 0.1 & N & 0.05 & 1 \\\ \hline \hline\\\ \end{tabular} } \end{center} /Notes:/ Para (1) and Para (2) correspond to the mean and standard deviation of the Beta (B), Gamma (G), and Normal (N) distributions and to the upper, lower bounds of the support for Uniform (U) distribution. \end{table}

Common Prior Distributions

\begin{table}[t!]
\begin{center}
	\scalebox{0.93}{
	\begin{tabular}{lccccccc} \hline\hline
		& Type & Para (1) & Para (2) &  & Type & Para (1) & Para (2)\\ \hline
		\multicolumn{8}{c}{Endogenous Propagation Parameters} \\ \hline
		$\gamma$      & G                &  1.75 &   0.5  & $s''$         & G                &     5 &   0.5 \\\\\\
		$\kappa$      & G                &   2.0 &   0.5  & $\delta\_2$    & G                &   0.7 &   0.5  \\\\\\
		$h$           & B                 &   0.5 &   0.2  &               &                     &       & \\\\\\
		\hline
		\multicolumn{8}{c}{Exogenous Process Parameters} \\\\\\
		\hline
		$\rho\_{a}$    & B                 &   0.7 &   0.2  & $\sigma\_{a}$  & IG           &     1 &     4  \\\\\\
		$\rho\_{b}$    & B                 &   0.7 &   0.2  & $\sigma\_{b}$  & IG           &     1 &     4  \\\\\\
		$\rho\_{l}$    & B                 &   0.7 &   0.2  & $\sigma\_{l}$  & IG           &     1 &     4  \\\\\\
		$\rho\_{i}$    & B                 &   0.7 &   0.2  & $\sigma\_{i}$  & IG           &     1 &     4  \\\\\\
		$\rho\_{g}$    & B                 &   0.7 &   0.2  & $\sigma\_{g}$  & IG           &     1 &     4  \\\\\\
		$\rho\_{tk}$   & B                 &   0.7 &   0.2  & $\sigma\_{tk}$ & IG           &     1 &     4  \\\\\\
		$\rho\_{tl}$   & B                 &   0.7 &   0.2  & $\sigma\_{tl}$ & IG           &     1 &     4  \\\\\\
		$\rho\_{tc}$   & B                 &   0.7 &   0.2  & $\sigma\_{tc}$ & IG           &     1 &     4  \\\\\\
		$\rho\_{z}$    & B                 &   0.7 &   0.2  & $\sigma\_{z}$  & IG           &     1 &     4  \\\\\\
		\hline \hline\\\\\\
	\end{tabular}
}
\end{center}
/Notes:/ For the Inv. Gamma (IG) distribution, Para (1) and Para (2) refer to
$s$ and $\nu$, where $p(\sigma|\nu, s)\propto \sigma^{-\nu-1}e^{-\nu s^2/2\sigma^2}$.

\end{table}

SMC Configuration

\begin{table}[t!] \begin{center} \begin{tabular}{p{4cm}p{2.5cm}} \hline \hline $N = 6,000$ & $N_\phi = 500$\\\ $N_{blocks} = 3$ & $N_{MH}=1$ \\\ $\lambda = 4.0$ & \\\ \multicolumn{2}{l}{Run Time [mm:ss]: 48:00 (12 cores)} \ \hline \hline \end{tabular} \end{center} \end{table}

Posterior Moments

\begin{table}[t!]
\begin{center}
	\footnotesize
	\begin{tabular}{l@{\hspace\*{1cm}}cc@{\hspace\*{1cm}}cc} \hline\hline
		& \multicolumn{2}{c}{Based on LPT Prior} & \multicolumn{2}{c}{Based on Diff. Prior} \\\\\\
		& Mean & [5\%, 95\%] Int. & Mean & [5\%, 95\%] Int. \\ \hline
		\multicolumn{5}{c}{Debt Response Parameters} \\ \hline
		$\gamma\_{g}$         &   0.16 & [  0.07,   0.27]  &   0.10 & [  0.01,   0.23] \\\\\\
		$\gamma\_{tk}$        &   0.39 & [  0.22,   0.60]  &   0.38 & [  0.16,   0.62] \\\\\\
		$\gamma\_{tl}$        &   0.11 & [  0.04,   0.21]  &   0.04 & [  0.00,   0.11] \\\\\\
		$\gamma\_{z}$         &   0.32 & [  0.17,   0.47]  &   0.32 & [  0.14,   0.49] \\\\\\
		\hline \multicolumn{5}{c}{Output Response Parameters} \\ \hline
		$\varphi\_{tk}$          &   1.67 & [  1.18,   2.18]  &   2.06 & [  1.44,   2.69] \\\\\\
		$\varphi\_{tl}$          &   0.29 & [  0.11,   0.53]  &   0.11 & [ -0.34,   0.58] \\\\\\
		$\varphi\_{g}$           &   0.06 & [  0.01,   0.13]  &  -0.43 & [ -0.87,   0.02] \\\\\\
		$\varphi\_{z}$           &   0.17 & [  0.06,   0.33]  &  -0.07 & [ -0.56,   0.41] \\\\\\
		\hline \multicolumn{5}{c}{Exogenous Tax Comovement Parameters} \\ \hline
		$\phi\_{kl}$          &   0.19 & [  0.14,   0.24]  &   1.57 & [  1.29,   1.87] \\\\\\
		$\phi\_{kc}$          &   0.03 & [ -0.03,   0.08]  &  -0.33 & [ -2.84,   2.73] \\\\\\
		$\phi\_{lc}$          &  -0.02 & [ -0.07,   0.04]  &   0.20 & [ -1.23,   1.40] \\\\\\
		\hline
		\multicolumn{5}{c}{Innovations to Fiscal Rules} \\ \hline
		$\sigma\_{g}$         &   3.03 & [  2.79,   3.30]  &   2.91 & [  2.66,   3.19] \\\\\\
		$\sigma\_{tk}$        &   4.36 & [  4.01,   4.75]  &   1.26 & [  1.08,   1.46] \\\\\\
		$\sigma\_{tl}$        &   2.95 & [  2.71,   3.22]  &   2.00 & [  1.71,   2.33] \\\\\\
		$\sigma\_{tc}$        &   3.99 & [  3.67,   4.33]  &   1.14 & [  0.96,   1.35] \\\\\\
		$\sigma\_{z}$         &   3.34 & [  3.07,   3.63]  &   3.34 & [  3.07,   3.63] \\ \hline \hline
	\end{tabular}
	\footnotesize
	\renewcommand{\baselinestretch}{2}
	\normalsize
\end{center}

\end{table}

Posterior of Output Response Parameters

\begin{figure}[t!] \begin{center} \begin{tabular}{cc} \includegraphics[width=0.47\textwidth]{static/lpt_varphi_g.pdf} & \includegraphics[width=0.47\textwidth]{static/lpt_varphi_z.pdf} \end{tabular} \end{center} \end{figure}

Notes: The figure depicts posterior densities under the LPT prior (solid) and the diffuse prior (dashed).

Posterior of Tax Comovement Parameters

\begin{center} \includegraphics[width=2.5in]{static/lpt_phi_scatter.pdf} \end{center}

Notes: The plots on the diagonal depict posterior densities under the LPT prior (solid) and the diffuse prior (dashed). The plots on the off-diagonals depict draws from the posterior distribution under the LPT prior (circles) and the diffuse prior (triangles).

Impulse Response to a Labor Tax Innovation

\begin{center} \includegraphics[width=3in]{static/lpt_etn_irf.pdf} \end{center}

Notes: Figure depicts posterior mean impulse responses under LPT prior (solid); diffuse prior (dashed); diffuse prior with \(\phi_{lc} > 0\), \(\phi_{kl} < 0\) (dotted); and diffuse prior with \(\phi_{lc} < 0\), \(\phi_{kl} > 0\) (dots and short dashes). \(\hat{C}_t\), \(\hat{I}_t\) and \(\hat{L}_t\) are consumption, investment, and hours worked in deviation from steady state.